Energy-momentum tensor for a scalar field (sign problem)

knobelc
Messages
14
Reaction score
0
Hi

I have a small subtle problem with the sign of the energy-momentum tensor for a scalar field as derived by varying the metric (s.b.). I would appreciate very much if somebody could help me on my specific issue. Let me describe the problem in more detail:

I conform to the sign convention g_{\mu \nu} = (+,-,-,-). The Lagranagian for a real scalar field is

\mathcal{L} = \frac{1}{2} \dot{\Phi}^2- (\nabla \Phi)^2 - V(\Phi ) = \frac{1}{2} g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi- V(\Phi ).

From Noether Theorem we find the energy-momentum tensor


T^{\mu \nu} = \frac{\partial \mathcal{L}}{\partial (\partial_\mu \Phi)} \: \partial^\nu \Phi - \mathcal{L} g^{\mu \nu} = \partial^\mu \Phi \partial^\nu \Phi - \mathcal{L} g^{\mu \nu}.

Now I want to derive this via varying the action

S = \int \mathcal{L} \sqrt{-g}\; dx^4

in respect to g_{\mu \nu}. In particular it holds

\delta S = \delta\int \mathcal{L} \sqrt{-g}\; dx^4 = -\frac{1}{2}\int T_{\mu \nu} \delta g^{\mu\nu} \sqrt{-g}\; dx^4.

T_{\mu \nu} is defined so that varying the action derived from the total Lagrangian

\mathcal{L_{\rm tot}} = \frac{1}{16\pi G} R + \mathcal{L}

yields the Einstein field equations

G_{\mu \nu} = 8\pi G T_{\mu \nu}.

(Note that

\delta\int\frac{1}{16\pi G} R \sqrt{-g}\; dx^4 = \int G_{\mu \nu} \delta g^{\mu \nu}\sqrt{-g}\; dx^4,

therefore the - sign in the definition of T_{\mu \nu}.)

Now let's vary the lagrangian of the scalar field:

\delta \int \mathcal{L} \sqrt{-g}\; dx^4
= \int \delta(\mathcal{L}) \sqrt{-g} + \mathcal{L} \delta(\sqrt{-g})\; dx^4
= \int \delta \left( \frac{1}{2} g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi- V(\Phi ) \right) \sqrt{-g} + \mathcal{L} \left(-\frac{1}{2} g_{\mu \nu} \delta g^{\mu \nu}\right) \sqrt{-g}\; dx^4
= \frac{1}{2}\int \left( \delta g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi - \mathcal{L} g_{\mu \nu} \delta g^{\mu \nu} \right) \sqrt{-g}\; dx^4
= \frac{1}{2}\int \left(\partial_\mu\Phi \;\partial_\nu\Phi - \mathcal{L} g_{\mu \nu} \right) \delta g^{\mu \nu} \sqrt{-g}\; dx^4.

Comparing this with the definition of the T_{\mu \nu} yields

T_{\mu \nu} = -\partial_\mu \Phi \partial_\nu \Phi + \mathcal{L} g_{\mu \nu}

leading to the opposite sign as derived by the Noether Theorem.

I would appreciate very much if somebody could explain why I get the sign wrong. I know this is a subtle (and possibly unimportant) issue but getting the wrong sign without understanding why gives a bad feeling. Thank you for any help!
 
Physics news on Phys.org
According to Wald the Klein-Gordon energy-momentum tensor from Noether's theorem agrees with the Klein-Gordon energy-momentum tensor from varying the metric "up to a numerical factor." I do not know if the numerical factor is -1.

Wald says that in others cases, there is less agreement, and it is the energy-momentum arrived at by varying g that appears on the right of Einstein's equation.

If you have Wald, look near the bottom of page 457.

I first ran into differences between the canonical and symmetric energy-momentum tensors in section 12.10 of Jackson.
 
Last edited:
I think, I got the reason for the wrong sign. Since I used the signature g_{\mu \nu} = (+,-,-,-) my definitions of T^{\mu \nu} and \mathcal{L_{\rm tot}} are not correct. With my signature the correct expressions read as

\delta S = \delta\int \mathcal{L} \sqrt{-g}\; dx^4 = +\frac{1}{2}\int T_{\mu \nu} \delta g^{\mu\nu} \sqrt{-g}\; dx^4.

and

\mathcal{L_{\rm tot}} = -\frac{1}{16\pi G} R + \mathcal{L}.

With this I get everything right. :-)
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top