Energy momentum tensor for RNS superstring

physicus
Messages
52
Reaction score
3

Homework Statement



The RNS action in flat gauge is given by
S=-\frac{1}{8\pi}\int d\sigma d\tau\,\frac{2}{\alpha'}\partial_\alpha X^{\mu}\partial^\alpha X_\mu+2i\bar{\psi}_A^\mu\gamma_{AB}^\alpha\partial_\alpha\psi_{\mu B}
\mu is a spacetime vector index, \alpha a worldsheet vector intex and A,B are Dirac spinor indices. Show that the energy-momentum tensor is given by
T_{\alpha\beta}=\partial_\alpha X^\mu\partial_\beta X_\mu+\frac{1}{4}\bar{\psi}^\mu\gamma_\alpha \partial_\beta \psi_\mu+\frac{1}{4}\bar{\psi}^\mu\gamma_\beta \partial_\alpha \psi_\mu-(\text{trace})
where Dirac indices are supressed.


The Attempt at a Solution



I really have serious trouble solving this. The energy momentum tensor is defined as
T_{\alpha\beta}=\frac{4\pi}{\sqrt{-h}}\frac{\delta S}{\delta h^{\alpha\beta}}
where h_{\alpha\beta} is the worldsheet metric and h its determinant.

My first problem is, that the expression above is already gauge fixed. In order to take the variation of the action with respect to the metric I have to reintroduce it in the action which yields
S=-\frac{1}{8\pi}\int d\sigma d\tau\,\sqrt{-h}\left[\frac{2}{\alpha'}h^{\alpha\beta}\partial_\alpha X^{\mu}\partial_\beta X_\mu+2ih^{\alpha\beta}\bar{\psi}^\mu \gamma_{\alpha} \partial_{\beta} \psi_{\mu B}\right]
Is that correct? I have read that also the metric $h_{\alpha\beta}$ has a superpartner, do I have to introduce the superpartner instead of the metric itself in the fermionic part of the action?

Although I am not sure if my form of the action with the metric reintroduced is correct I tried to do the calculation:
\frac{\delta S}{\delta h^{\alpha\beta}}
= -\frac{1}{8\pi}\int d\sigma d\tau \left[\frac{1}{2\sqrt{-h}}\frac{-\delta h}{\delta h^{\alpha\beta}}h^{\epsilon\rho}( \partial_{\epsilon} X^{\mu}\partial_\rho X_\mu+2i\bar{\psi}^\mu\gamma_{\epsilon} \partial_{\rho} \psi_{\mu B})\right]-\frac{1}{8\pi}\sqrt{-h}(\partial_\alpha X^{\mu}\partial_\beta X_\mu+2i\bar{\psi}^\mu\gamma_{\alpha} \partial_{\beta} \psi_{\mu B})
= -\frac{1}{8\pi}\left[-\frac{1}{2}\sqrt{-h}h_{\alpha\beta}h^{\epsilon\rho}( \partial_{\epsilon} X^{\mu} \partial_{\rho} X_\mu+2i\bar{\psi}^\mu\gamma_{\epsilon} \partial_{\rho} \psi_{\mu B})+\sqrt{-h}(\partial_\alpha X^{\mu}\partial_\beta X_\mu+2i\bar{\psi}^\mu\gamma_{\alpha} \partial_{\beta} \psi_{\mu B})\right]
\Rightarrow T_{\alpha\beta}=\frac{4\pi}{\sqrt{-h}}\frac{\delta S}{\delta h^{\alpha\beta}} = \frac{1}{4}h_{\alpha\beta}h^{\epsilon\rho}( {\partial}_{\epsilon} X^{\mu} \partial_{\rho} X_\mu+2i\bar{\psi}^\mu\gamma_{\epsilon} \partial_{\rho} \psi_{\mu B})-\frac{1}{2}(\partial_\alpha X^{\mu}\partial_\beta X_\mu+2i\bar{\psi}^\mu\gamma_{\alpha} \partial_{\beta} \psi_{\mu B})

Unfortunately, that does not look like the given solution. Does anybody know what I did wrong or which other approach I could choose? I am very thenkful for any help. Also, I am grateful for any reference to literature.

physicus
 
Physics news on Phys.org
I don't know much about string theory, but are you sure the variation of gamma matrices vanishes? \frac{\delta \gamma^\rho}{\delta g^{\alpha \beta}}= 0 ?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top