Energy stored in a device (Charged Capacitor)

AI Thread Summary
The discussion revolves around calculating the energy stored in a charged capacitor, specifically a metallic sphere on a van de Graaf generator with a charge of 3x10^-5 C. The relevant formula for energy is U = 1/2C(ΔV)^2, where ΔV can be derived from V = Q/(4∏ε0r). Participants express confusion about how to find ΔV and the role of charge density, but it is clarified that the radius is not necessary for the final calculation. Ultimately, the energy can be simplified to U = Q^2/2C, confirming that the radius does not impact the solution. The conversation highlights the importance of understanding the relationship between charge, voltage, and energy in capacitors.
Parad0x88
Messages
73
Reaction score
0

Homework Statement


The metallic sphere on top of a large van de Graaf generator has a radius of 2.0 m. Suppose that the sphere carries a charge of 3x10-5 C. How much energy is stored in this device?

Homework Equations


So the equation I must use is this: U = 1/2C(ΔV)^2
Q is given; 3 x 10 ^ -5C
To find ΔV, I'd first the formula :V = Q/(4∏ε0r)



The Attempt at a Solution


Then it's simply a matter of plugging the numbers. The formula I'm not sure is how to find ΔV from the information, I'm not sure I'd be using the right one.
 
Physics news on Phys.org
What's the magic word beginning with d ?
 
CWatters said:
What's the magic word beginning with d ?

Oh, I have to find the charge density don't I? Bear with me, I'm still quite confused with all of that...

So, charge density of a sphere: p = Q/V, V = (4∏r3)/3

Would I use this as my Q in the above formula?
 
I meant d for differentiate .

Somewhat informally..

Q=VC
V=Q/C
dV = dQ/C

dQ = the amount of charge when fully charged - the amount of charge when discharged

= 3x10-5 - 0
 
CWatters said:
I meant d for differentiate .

Somewhat informally..

Q=VC
V=Q/C
dV = dQ/C

dQ = the amount of charge when fully charged - the amount of charge when discharged

= 3x10-5 - 0

Ok I'm sorry but I'm not following you on this one, this isn't something I've seen in class
 
It's probably simpler than you think.

The max energy case is with it charged to some voltage V, The minimium energy state is with it discharged (zero volts) so ΔV is just V. Likewise for ΔQ.

U = 1/2C(V)2

now
Q=VC so
V = Q/C

then substitute for V giving

U = 1/2*C*(Q/C)2
= Q2/2C
 
CWatters said:
It's probably simpler than you think.

The max energy case is with it charged to some voltage V, The minimium energy state is with it discharged (zero volts) so ΔV is just V. Likewise for ΔQ.

U = 1/2C(V)2

now
Q=VC so
V = Q/C

then substitute for V giving

U = 1/2*C*(Q/C)2
= Q2/2C

Thanks! It is simpler than I thought... So in that case I don't need the radius of the generator to solve it, it's basically an unnecessary information given?
 
Back
Top