What is the Entropy Change of the Universe?

AI Thread Summary
The discussion revolves around calculating the entropy change of the universe during a non-quasi-static process where a system absorbs 200 J of heat from a 300 K reservoir and rejects 100 J to a 200 K reservoir while performing 50 J of work. Participants emphasize the need to break down the entropy change into four parts related to heat flow between the system and the reservoirs. There is confusion regarding the differences in entropy calculations between non-quasi-static and quasi-static processes, particularly concerning the temperature at which the system operates. Ultimately, the consensus is that the entropy change of the universe must be greater than zero, but specific figures are difficult to determine due to insufficient information. The conclusion is that while ΔS > 0 is agreed upon, precise calculations remain elusive.
sodaboy7
Messages
81
Reaction score
0

Homework Statement


A system absorbs 200 J of heat from a reservoir at 300 K and rejects 100 J to a reservoir at 200 K as it moves from state A to B. During this "NON-QUASI-STATIC" process 50 J of work is done by the system. What is Entropy change of universe ?

The Attempt at a Solution



My intuition says, it must be some value greater than zero.
 
Physics news on Phys.org
sodaboy7 said:

Homework Statement


A system absorbs 200 J of heat from a reservoir at 300 K and rejects 100 J to a reservoir at 200 K as it moves from state A to B. During this "NON-QUASI-STATIC" process 50 J of work is done by the system. What is Entropy change of universe ?

The Attempt at a Solution



My intuition says, it must be some value greater than zero.
Start with the definition of ΔS: ΔS = ∫dQrev/T

You have to break the entropy change into four parts:

1. the heat flow out of the hot reservoir to the system changes the entropy of the hot reservoir.

2. the heat flow into the system changes the entropy of the system.

3. the heat flow out of the system to the cold reservoir changes the entropy of the system

4. the heat flow into the cold reservoir changes the entropy of the cold reservoir.

For each of the 4 parts you have to determine the ΔS (be careful about the sign). Then add them up to find the total entropy change.

Hint: 1 and 4 are easy. But in order to find the ΔS of the system you have to know the heat flow Q and the temperature at which the heat flow occurs. Does the problem provide you with more information?

AM
 
Andrew Mason said:
Start with the definition of ΔS: ΔS = ∫dQrev/T

You have to break the entropy change into four parts:

1. the heat flow out of the hot reservoir to the system changes the entropy of the hot reservoir.

2. the heat flow into the system changes the entropy of the system.

3. the heat flow out of the system to the cold reservoir changes the entropy of the system

4. the heat flow into the cold reservoir changes the entropy of the cold reservoir.

For each of the 4 parts you have to determine the ΔS (be careful about the sign). Then add them up to find the total entropy change.

Hint: 1 and 4 are easy. But in order to find the ΔS of the system you have to know the heat flow Q and the temperature at which the heat flow occurs. Does the problem provide you with more information?

AM

You are right. I also thought the same way but I have some slight confusions:
1) The question was asked for "NON-QUASI-STATIC" and "QUASI-STATIC". The QUASI-STATIC part I was able to answer as in that case 2 , 4 will be zero. So how does "NON-QUASI-STATIC" entropy calculation differ from "QUASI-STATIC" one.

2) For getting the value of 2, 4 I will need the temperature at which the system(2,4) is working which is not given in problem.
 
sodaboy7 said:
You are right. I also thought the same way but I have some slight confusions:
1) The question was asked for "NON-QUASI-STATIC" and "QUASI-STATIC". The QUASI-STATIC part I was able to answer as in that case 2 , 4 will be zero. So how does "NON-QUASI-STATIC" entropy calculation differ from "QUASI-STATIC" one.
I don't think 2 and 4 will be 0 in any case. If processes are quasi-static, the flow of heat into the system will be at a temperature arbitrarily close to the reservoirs. But since there is heat flow in both stages, there is an entropy change of the system for each stage. The two could sum to zero if there was a complete cycle involved. But in this case you can see that the system experiences a net increase in internal energy, which means that we are dealing with only part of the cycle.

2) For getting the value of 2, 4 I will need the temperature at which the system(2,4) is working which is not given in problem.
That was my thought as well. You don't need to be given the temperature if you can work it out but there is not sufficient information here to do that.

Maybe the answer is just: ΔS > 0.

AM
 
yes the answer given is just ΔS > 0. I just wanted to know the figures.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top