Equations for a mass falling to Earth from a distance

AI Thread Summary
The discussion focuses on the equations governing a mass falling to Earth, considering gravitational changes with distance and air resistance. It introduces a second-order, non-linear differential equation that incorporates the drag coefficient as a function of distance from the Earth's core. Key questions raised include the relationship between the drag coefficient and distance, methods for experimentally determining the drag coefficient, and approaches to solving the differential equation. Suggestions for improving the model include considering additional dimensions and the influence of speed on the drag coefficient. The conversation highlights the complexity of modeling falling objects due to varying air density and resistive forces.
shibe
Messages
3
Reaction score
0
I have a question :
If we consider the change in g due to distance from the Earth core; then

y=distance from earth’s core
t=time
G=gravitation constant
M=Earth’s mass
k=GM

$$y^2(t)=\frac{k}{y(t)^2}$$

If we consider air resistive force as proportional to speed squared, then:

m=falling object mass
$$y^2(t)=\frac{k}{y(t)^2}-by’(t)^2$$

And if we go even further beyond:
Then we know that the air density changes depending on the distance of the falling object from the Earth which would affect the drag coefficient, so the constant b is a function of y.

So we have the second order, non linear differential equation :

$$y^2(t)=\frac{k}{y(t)^2}-b(y)y’(t)^2$$

So my question is,

0.) what is the precise relationship between the constant b and distance from the Earth core ?

1.) how to experimentally determine drag coefficient ?

2) how to solve the given differential equation?

3.) *HOW TO IMPROVE THE MODEL EVEN FURTHER* ?
 
Last edited:
Physics news on Phys.org
shibe said:
$$y^2(t)=\frac{k}{y(t)^2}-by(t)^2$$

You are using the symbol ##y## for both, distance and speed.

shibe said:
$$y^2(t)=\frac{k}{y(t)^2}-b(y)y(t)^2$$

##b## also depends on speed.

shibe said:
0.) what is the precise relationship between the constant b and distance from the Earth core ?

For the density you may use the International Standard Atmosphere. For the drag coefficient see 1.)

shibe said:
1.) how to experimentally determine drag coefficient ?

With a wind tunnel or with numeric simulations.

shibe said:
2) how to solve the given differential equation?

Numerically

shibe said:
3.) *HOW TO IMPROVE THE MODEL EVEN FURTHER* ?

Maybe with additional dimensions.
 
  • Like
Likes shibe and PeroK
[ thanks for the corrections and link to ISA ]

how does b depend on speed
For air resistance proportional to v^2 ,
The Eqn is $$F_R=\frac{dA}{2}v^2$$

F_R=Resistive force
d=Fluid density
A=surface area
So $$b=\frac{dA}{2}$$

Also what do you mean by add extra “dimensions”
 
shibe said:
how does b depend on speed
That's complicate and depends on shape and surface properties. Here is an example for spheres and discs:
drag-disk.jpg

(The Reynolds number is proportional to speed.)

shibe said:
Also what do you mean by add extra “dimensions”

Your equation is one-dimensional but the space we live in has three dimensions.
 
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
Back
Top