What Position Does the Woman Reach When the Beam Tips?

  • Thread starter Thread starter mandy9008
  • Start date Start date
  • Tags Tags
    Pivot Points
AI Thread Summary
The discussion focuses on a physics problem involving a beam supported by two pivots and a woman walking on it. When the beam tips, the normal force at the left pivot (n1) is zero, while the normal force at the right pivot (n2) equals the total weight of the woman and the beam, calculated to be approximately 1206.38 N. Participants emphasize the importance of including the beam's mass in calculations and suggest using torque equations to determine the woman's position at the tipping point. The net torque just before tipping is crucial for solving the problem, and visual aids like diagrams are recommended for clarity. Understanding the forces and torques involved is essential for finding the woman's position when the beam begins to tip.
mandy9008
Messages
127
Reaction score
1

Homework Statement


A beam resting on two pivots has a length of L = 6.00 m and mass M = 72.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot placed a distance l = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 51.1 kg steps onto the left end of the beam and begins walking to the right as in the figure below. The goal is to find the woman's position when the beam begins to tip.

[PLAIN]http://www.webassign.net/sercp8/p8-12.gif[/IMG

a. What is n1 when the beam is about to tip?
b. Use the force equation of equilibrium to find the value of n2 when the beam is about to tip.
c. Using the result of part (a) and the torque equilibrium equation, with torques computed around the second pivot point, find the woman's position when the beam is about to tip.


The Attempt at a Solution


a. n1=0 N
b. n2=mg
n2= (51.1kg)(9.8 m/s2)
n2=500.78 N
c. since F is 0 in part a, I would think that this answer will be zero as well
 
Last edited by a moderator:
Physics news on Phys.org
You have to include the mass of the beam itself as-well.
 
okay, so n2 will be 1206.38 instead, assuming that you meant: n2= (51.1kg + 72.0 kg)(9.8 m/s2). so what do i need to do for part c?
 
That looks about right. Whats the equation for torque? And the instant before it begins to tip, what is the net torque? It might help if you draw a picture of this situation, consider what torques are in what direction, remember to include the beam.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top