Estimating the ratio of flux of sunlight to moonlight (at full moon)

AI Thread Summary
The discussion focuses on estimating the ratio of sunlight to moonlight flux at full moon, with initial calculations suggesting moonlight is 1,400,000 times fainter than sunlight. The calculations consider solar flux, the geometry of the Moon, and its albedo, leading to a derived ratio of 436,000 to 1 based on astronomical magnitudes. Concerns arise regarding the accuracy of the physics, particularly in how light disperses from the Moon. A key point raised is that not all sunlight radiates uniformly in an expanding hemisphere, which affects visibility of the crescent moon. The conversation emphasizes the need to reassess the assumptions made in the calculations.
cragwolf
Messages
169
Reaction score
0
I'm trying to estimate the ratio of the flux of sunlight to moonlight (at full moon). What I'm interested in is if I'm doing the physics right. I know what the solar flux is at the surface of the Earth (actually, just outside the atmosphere): roughly 1400 Watts/m^2. I can actually calculate that by knowing the energy output of the Sun, its radius, and its distance to the Earth.

Now, the Moon should get roughly the same energy flux (OK, a little bit less since it's slightly further away at full moon, but it does not make much difference). The Moon is initially treated like a disk that intercepts part of the expanding sphere of sunlight. This disk has area pi * R^2, where R is the radius of the Moon.

The Moon then reflects this sunlight, but now I treat it like a sphere, and only half the sphere (the half we on Earth can see) is involved in reflecting the sunlight. So we have this expanding hemisphere of moonlight that now the Earth intercepts.

So the Earth is thus capturing a flux of:

1400 * (pi * R^2) / (2 * pi * d^2)

where d is the distance of the Moon from the Earth.

Oh, but I forgot the albedo of the Moon, which is 0.07, so the flux is actually:

1400 * 0.07 * (pi * R^2) / (2 * pi * d^2)

Or roughly:

1400 * (1 / 1400000)

In other words, moonlight is 1400000 times fainter than sunlight. But when I look up the magnitudes:

Sun = -26.7
Moon = -12.6

which is a factor of 14.1 magnitudes of difference, or roughly a ratio of 436000 to 1. So I'm off by a factor of about 3. This difference has me worried, and I'm wondering if I did the physics wrong.
 
Astronomy news on Phys.org
cragwolf said:
In other words, moonlight is 1400000 times fainter than sunlight. But when I look up the magnitudes:

Sun = -26.7
Moon = -12.6

which is a factor of 14.1 magnitudes of difference, or roughly a ratio of 436000 to 1. So I'm off by a factor of about 3. This difference has me worried, and I'm wondering if I did the physics wrong.

not all the sunlight goes out in that expanding hemisphere
BTW I remember you from an especially great time at PF----2003-2004. We had Astronomy Game then, IIRC.
Maybe I am mistaking you for someone whose name sounds like cragwolf, but if not then you probably remember back that far.

anyway if all the light went out in an expanding hemisphere, then nobody would ever see the crescent moon. We would see the HALF moon (the moon at quarter phase). But you are denying light to anybody who makes an obtuse angle with the sun (from moon's standpoint)

so the crescent (before halfmoon) and the waning would be invisible.

think of a glancing scattering----it shows that the expanding hemisphere is not where all the light goes
 
Last edited:
Indeed you're right, about me and the Moon. Thanks for the hint, I'm going to look at it again when I get home from work.
 
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Asteroid, Data - 1.2% risk of an impact on December 22, 2032. The estimated diameter is 55 m and an impact would likely release an energy of 8 megatons of TNT equivalent, although these numbers have a large uncertainty - it could also be 1 or 100 megatons. Currently the object has level 3 on the Torino scale, the second-highest ever (after Apophis) and only the third object to exceed level 1. Most likely it will miss, and if it hits then most likely it'll hit an ocean and be harmless, but...
Back
Top