Euler's rule or Non-homogenous method?

  • Thread starter Thread starter lost_math
  • Start date Start date
  • Tags Tags
    Method
lost_math
Messages
5
Reaction score
0

Homework Statement


x^2 y' + xy + 5x^5=0

Homework Equations


no starting conditions


The Attempt at a Solution


cannot figure out how to do this. Euler's equations methods have no pure x terms, and the non-homogenous methods have some kind of separable thing, where the x terms neatly land up on RHs and y terms on LHS. But what do i do with this? Is it the polynomial expansion or maybe some kind of taylor series?
 
Physics news on Phys.org
U can divide by "x" (assuming x different from 0) and then write the resulting eqn as

(xy)'=-5x^{4}

Integrate both terms and then see what you get.

Daniel.
 
I think dextercioby missed a term.

Start by putting in the form y' + y*(1/x) = -5x^3

Next, your integrating factor is p = e^[integral(1/x)dx] = e^(lnx) = x

Continue...
 
Stevecgz said:
I think dextercioby missed a term.

Start by putting in the form y' + y*(1/x) = -5x^3

Next, your integrating factor is p = e^[integral(1/x)dx] = e^(lnx) = x

Continue...

He didn't miss a term, your solution and his are identical, yours is just more detailed.
 
d_leet said:
He didn't miss a term, your solution and his are identical, yours is just more detailed.

Right :smile:
 
Thanks all, was really helpful.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top