Evaluate ∫ (3 + √x) / (x(3 + x)) dx

  • Thread starter Thread starter devonsn
  • Start date Start date
  • Tags Tags
    Integral
devonsn
Messages
3
Reaction score
0
Evaluate the integral ∫ (3 + √x) / (x(3 + x)) dx

I've broken it up into ∫ [3 / x(3 + x)] dx + ∫ [ √x / (x(3 + x))] dx

And that's as far as I can get.
 
Physics news on Phys.org
The first one is partial fractions. For the second one I suggest u=sqrt(x).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top