Evaluate integral if R=[0,1]x[0,1]

  • Thread starter Thread starter jonroberts74
  • Start date Start date
  • Tags Tags
    Integral
jonroberts74
Messages
189
Reaction score
0

Homework Statement


evaluate integral if R=[0,1]x[0,1]

\iint_R ln[(x+1)(y+1)]dA





The Attempt at a Solution



\int_{0}^{1}\int_{0}^{1} ln[(x+1)(y+1)] dydx

by parts

u=ln[(x+1)(y+1)]; du = \frac{1}{(x+1)(y+1)}dy;dv=dy;v=y

\int_{0}^{1} \Bigg[\frac{y}{(x+1)(y+1)} - \frac{1}{x+1}\int_{0}^{1} 1 - \frac{1}{y+1}dy\Bigg]dx

\int_{0}^{1} \Bigg[\frac{1}{2(x+1)} - \frac{1}{x+1} - \frac{ln(2)}{(x+1)}\Bigg]dx


\frac{1}{2}ln(2) - ln(2) - ln^2(2)

not sure what I did wrong but I know that's the incorrect answer
 
Physics news on Phys.org
jonroberts74 said:

Homework Statement


evaluate integral if R=[0,1]x[0,1]\iint_R ln[(x+1)(y+1)]dA

The Attempt at a Solution

\int_{0}^{1}\int_{0}^{1} ln[(x+1)(y+1)] dydx
by partsu=ln[(x+1)(y+1)]; du = \frac{1}{(x+1)(y+1)}dy;dv=dy;v=y
\int_{0}^{1} \Bigg[\frac{y}{(x+1)(y+1)} - \frac{1}{x+1}\int_{0}^{1} 1 - \frac{1}{y+1}dy\Bigg]dx
\int_{0}^{1} \Bigg[\frac{1}{2(x+1)} - \frac{1}{x+1} - \frac{ln(2)}{(x+1)}\Bigg]dx
\frac{1}{2}ln(2) - ln(2) - ln^2(2)
not sure what I did wrong but I know that's the incorrect answer
An error was made when you stated u=ln[(x+1)(y+1)];\ \ du = \frac{1}{(x+1)(y+1)}dy\ .

Treat (x+1) as a constant (with respect to u). Then: Either use the chain rule, or write ##\ \ln[(x+1)(y+1)]\ ## as ##\ \ln(x+1)+\ln(y+1)\ ##
 
  • Like
Likes 1 person
so I could do

\int_{0}^{1}ln(x+1)dx+\int_{0}^{1}ln(y+1)dy

forgot about the log properties for a second

or even

2\int_{0}^{1}ln(x+1)dx or the y counterpart

2[(x+1)ln(x+1)-(x+1)]\Bigg|_{0}^{1} = 4ln(2)-2 = ln(16)-2
 
Last edited:
jonroberts74 said:
so I could do

\int_{0}^{1}ln(x+1)dx+\int_{0}^{1}ln(y+1)dy

forgot about the log properties for a second

or even

2\int_{0}^{1}ln(x+1)dx or the y counterpart

2[(x+1)ln(x+1)-(x+1)]\Bigg|_{0}^{1} = 4ln(2)-2 = ln(16)-2
You can't generally do that sort of split for a double integral (or any iterated integral for that matter).

However, the following is true.

\displaystyle \int_{0}^{1}\int_{0}^{1} ln[(x+1)(y+1)]\, dydx=\int_{0}^{1}\int_{0}^{1} ln(x+1)\, dydx+\int_{0}^{1}\int_{0}^{1} ln(y+1)\, dydx
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top