newabb
- 3
- 0
Hi,
Can anyone tell me if the following of my integration is right or wrong?
<br /> \int_{-2}^{2} \sqrt{4 - x^2} \ dx<br />
let
x = 2 sin \theta
then
\frac{dx}{d\theta}=2cos\theta, \ dx=2cos\theta \ d\theta
also
4-x^2 = 4-(2sin\theta)^2<br /> = 4 - 4sin^2\theta = 4(1-sin^2\theta)=4cos^2\theta<br />
thus
<br /> \sqrt{4-x^2}=\sqrt{4cos^2\theta}<br />
\int_{-2}^{2} \sqrt{4 - x^2} \ dx
= \int_{-2}^{2} \sqrt{4cos^2\theta} \ (2cos\theta \ d\theta)
= \int_{-2}^{2} 2cos\theta \ (2cos\theta \ d\theta)
= 4\int_{-2}^{2} cos^2\theta \ d\theta
= 4\int_{-2}^{2} \frac{1+cos2\theta}{2} \ d\theta
= \frac{4}{2} \int_{-2}^{2} (1+cos2\theta) \ d\theta
let u=2\theta then \frac{du}{d\theta}=2, \ d\theta = \frac{1}{2}du
= 2 \int_{-2}^{2} (1+cos2\theta) \ d\theta
= 2 \int_{-2}^{2} (1+cos \ u) \ (\frac{1}{2}du)
= \frac{2}{2}\int_{-2}^{2} (1+cos \ u) \ du
= \int_{-2}^{2} (1+cos \ u) \ du
= u + sin \ u]^{2}_{-2}
= 2\theta + sin2\theta]^{2}_{-2}
= [2(2) + sin2(2)] - [2(-2) + sin2(-2)]
= (4 + sin4) - [-4 + sin(-4)]
= 4 + sin4 + 4 - sin(-4)
= 8 + sin4 - sin(-4)
= 8 + 0.07 - (-0.035)
= 8 + 0.07 + 0.035
= 8 + 0.07 + 0.035
= 8.105
Thenk you very much for evaluating
Can anyone tell me if the following of my integration is right or wrong?
<br /> \int_{-2}^{2} \sqrt{4 - x^2} \ dx<br />
let
x = 2 sin \theta
then
\frac{dx}{d\theta}=2cos\theta, \ dx=2cos\theta \ d\theta
also
4-x^2 = 4-(2sin\theta)^2<br /> = 4 - 4sin^2\theta = 4(1-sin^2\theta)=4cos^2\theta<br />
thus
<br /> \sqrt{4-x^2}=\sqrt{4cos^2\theta}<br />
\int_{-2}^{2} \sqrt{4 - x^2} \ dx
= \int_{-2}^{2} \sqrt{4cos^2\theta} \ (2cos\theta \ d\theta)
= \int_{-2}^{2} 2cos\theta \ (2cos\theta \ d\theta)
= 4\int_{-2}^{2} cos^2\theta \ d\theta
= 4\int_{-2}^{2} \frac{1+cos2\theta}{2} \ d\theta
= \frac{4}{2} \int_{-2}^{2} (1+cos2\theta) \ d\theta
let u=2\theta then \frac{du}{d\theta}=2, \ d\theta = \frac{1}{2}du
= 2 \int_{-2}^{2} (1+cos2\theta) \ d\theta
= 2 \int_{-2}^{2} (1+cos \ u) \ (\frac{1}{2}du)
= \frac{2}{2}\int_{-2}^{2} (1+cos \ u) \ du
= \int_{-2}^{2} (1+cos \ u) \ du
= u + sin \ u]^{2}_{-2}
= 2\theta + sin2\theta]^{2}_{-2}
= [2(2) + sin2(2)] - [2(-2) + sin2(-2)]
= (4 + sin4) - [-4 + sin(-4)]
= 4 + sin4 + 4 - sin(-4)
= 8 + sin4 - sin(-4)
= 8 + 0.07 - (-0.035)
= 8 + 0.07 + 0.035
= 8 + 0.07 + 0.035
= 8.105
Thenk you very much for evaluating