Evaluate the integral (inverse trig)

  • Thread starter Thread starter shft600
  • Start date Start date
  • Tags Tags
    Integral Trig
shft600
Messages
23
Reaction score
0

Homework Statement


Evaluate the following integral:
(int)1/sqrt(2x-x2)dx


Homework Equations


d(arcsinx)/dx = 1/sqrt(1-x2)


The Attempt at a Solution


I just need a good start in the right direction on this one so I can at least try it. I know the arcsin d/dx as above, but how do I make this work? Is it some kind of integration by parts or reduction? I have no idea how to go about dealing with the sqrt(2x-x2) mostly, or how it would get there from arcsin...

any help you can give would be much appreciated!
 
Physics news on Phys.org
Try completing the square.
 
hm.. I'm trying that but still stuck, I get

int: 1/sqrt(x(2-x))dx, I can move the root up to the top easily enough by multiplying by sqrt(x(2-x))/sqrt(x(2-x)), but that doesn't help much. I found the formula relating a/sqrt(b+x2) to (a/sqrt(b))arctan(x/sqrt(b))+C, but that still doesn't help me with the 2x...
 
No no. -x^2 + 2x = -(x^2 - 2x) = -(ax + b)^2 + c. Find a, b, and c.

Once you do that, what happens if you let u = ax + b?
 
by that, it should be
-(x2-2x) = -((x-1)2-1), or a=1, b=-1, c=-1
so then, making u=x-1, du=1, it becomes

int{ du/sqrt(-u2-a2)

and that falls into the arccosh formula as:
cosh-1(-u/a)+c
or
cosh-1(-(x-1)/1)+c
cosh-1(1-x)+c, and that should be the final answer for the indefinate integral right? or can I just plug the -u in like that?
 
shft600 said:
by that, it should be
-(x2-2x) = -((x-1)2-1), or a=1, b=-1, c=-1
so then, making u=x-1, du=1, it becomes

int{ du/sqrt(-u2-a2)

and that falls into the arccosh formula as:
cosh-1(-u/a)+c
or
cosh-1(-(x-1)/1)+c
cosh-1(1-x)+c, and that should be the final answer for the indefinate integral right? or can I just plug the -u in like that?

Be careful. You are saying -(x-1)^2 - 1 = 2x - x^2?

What if x = 1? Then, -1 = 2 - 1 = 1, which is wrong. It should be -(x-1)^2 + 1.
So if we let u = x - 1
So, we have,
<br /> \int \frac{1}{\sqrt{1 - u^2}} du<br />
That should look more familiar.
 
ooh, my bad... so its equal to arcsin(x-1)+C !
 
Looks about right. : )
 
Back
Top