moxy
- 40
- 0
Homework Statement
ForQ(x) = x^k + \sum_{n=0}^{k-1} a_n x^n
Find \lim_{x→∞}\left({Q(x)^{\frac{1}{k}} - x}\right)
Homework Equations
L'Hopital
The Attempt at a Solution
Q(x) - x^k = \sum_{n=0}^{k-1} a_n x^n
Q(x) - x^k = (Q(x)^{\frac{1}{k}})^k - x^k = \left(Q(x)^{\frac{1}{k}} - x\right)\left([Q(x)^{\frac{1}{k}}]^{k-1} + x[Q(x)^{\frac{1}{k}}]^{k-2} + ... + x^{k-2}Q(x)^{\frac{1}{k}} + x^{k-1} \right)
Q(x)^{\frac{1}{k}} - x = \frac{Q(x) - x^k}{[Q(x)^{\frac{1}{k}}]^{k-1} + x[Q(x)^{\frac{1}{k}}]^{k-2} + ... + x^{k-2}Q(x)^{\frac{1}{k}} + x^{k-1}}
Then \lim_{x→∞}{\left(Q(x)^{\frac{1}{k}} - x\right)} = \lim_{x→∞}\frac{f(x)}{g(x)}, and if I can show \lim_{x→∞}g(x) = ∞, I can use L'Hopital.
Am I headed in the right direction? I can see this either working out nicely after a lot of work or being an incredible waste of time. Am I overlooking a simpler way to evaluate this limit?