1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Evaluating a sum by Abel's Thm

  1. May 16, 2006 #1


    User Avatar
    Homework Helper

    I wish to evaluate the sum

    [tex]\sum_{k=n}^{\infty} \left(\begin{array}{c}k\\n\end{array}\right) \frac{(-1)^k}{k+1}[/tex]

    I think I can use Abel's theorem... just read: for |z|<1, we have

    [tex]\frac{1}{1+z}\left( \frac{z}{1+z}\right) ^{n} = z^n\frac{1}{(1+z)^{n+1}} = (-1)^n\frac{z^n}{n!}\frac{d^n}{dz^n} \left( \frac{1}{1+z}\right) [/tex]
    [tex]= (-1)^n\frac{z^n}{n!}\frac{d^n}{dz^n} \left( \sum_{k=0}^{\infty}(-1)^{k}z^{k} \right) = (-1)^n\frac{z^n}{n!}\sum_{k=n}^{\infty}(-1)^{k}\frac{k!}{(k-n)!}z^{k-n} = \sum_{k=n}^{\infty}(-1)^{n+k}\left(\begin{array}{c}k\\n\end{array}\right) z^{k} [/tex]

    here obtained is the identity

    [tex]\frac{1}{1+z}\left( \frac{z}{1+z}\right) ^{n} = \sum_{k=n}^{\infty}(-1)^{n+k}\left(\begin{array}{c}k\\n\end{array}\right) z^{k} [/tex] ​

    valid for |z|<1. Suppose that 0<x<1 and multiply the above identity by [tex](-1)^n[/tex] and then integrate over (0,x) to arrive at

    [tex]\int_{z=0}^{x}\left( \frac{-z}{1+z}\right) ^{n}\frac{dz}{1+z} = \int_{z=0}^{x} \sum_{k=n}^{\infty}(-1)^{k}\left(\begin{array}{c}k\\n\end{array}\right) z^{k}dz = \sum_{k=n}^{\infty}(-1)^{k}\left(\begin{array}{c}k\\n\end{array}\right) \frac{x^{k+1}}{k+1} [/tex] ​

    to the latter sum apply Abel's Theorem to determine that

    [tex]\lim_{x\rightarrow 1^-} \sum_{k=n}^{\infty}(-1)^{k}\left(\begin{array}{c}k\\n\end{array}\right) \frac{x^{k+1}}{k+1} = \sum_{k=n}^{\infty}\left(\begin{array}{c}k\\n\end{array}\right) \frac{(-1)^{k}}{k+1} [/tex] ​

    so that, by the previous identity, the value of the sum is given by

    [tex]\boxed{ \sum_{k=n}^{\infty}\left(\begin{array}{c}k\\n\end{array}\right) \frac{(-1)^{k}}{k+1} = \lim_{x\rightarrow 1^-} \int_{z=0}^{x}\left( \frac{-z}{1+z}\right) ^{n}\frac{dz}{1+z} }[/tex] ​

    Okay, so www.integrals.com[/url] (also, [PLAIN]http://www.hostsrv.com/webmab/app1/MSP/quickmath/02/pageGenerate?site=quickmath&s1=calculus&s2=integrate&s3=advanced#reply [Broken]) gives the integral in terms of the hypergeometric function 2F1, viz.

    [tex]\lim_{x\rightarrow 1^-} \int_{z=0}^{x}\left( \frac{-z}{1+z}\right) ^{n}\frac{dz}{1+z} = \lim_{x\rightarrow 1^-} (-1)^k\frac{x^{k+1}}{k+1} _2F_1 (k+1,k+1;k+2;-x) = \frac{(-1)^k}{k+1} _2F_1 (k+1,k+1;k+2;-1) [/tex] ​

    so here I need assistance, the sum above is to be again summed over, as in

    [tex]\zeta ^{\prime} (0) =\sum_{n=0}^{\infty} (n+1)\left[ \log(n+1) -1\right] \sum_{k=n}^{\infty}\left(\begin{array}{c}k\\n\end{array}\right) \frac{(-1)^{k}}{k+1} [/tex]​

    where [tex] \zeta (s)[/tex] denotes Riemann's zeta function, and it should sum to [tex] -\log \sqrt{2\pi}[/tex]: and thoughts as to how to proceed from here?
    Last edited by a moderator: May 2, 2017
  2. jcsd
  3. May 19, 2006 #2


    User Avatar
    Homework Helper

    That integral has promise...

    That integral has promise... so put

    [tex] I_{n}=\int_{0}^{1}\left( \frac{-z}{1+z}\right) ^{n}\frac{dz}{1+z} [/tex]

    my prof said to try integration by parts (thanks Mihai,) pick, say

    [tex]u=z^n\Rightarrow du=nz^{n-1}dz \mbox{ and } dv=(-1)^{n}(1+z)^{-n-1}dz\Rightarrow v=\frac{(-1)^{n+1}}{n}(1+z)^{-n}[/tex] ​

    which gives

    [tex]I_{n} = \int_{0}^{1}\left( \frac{-z}{1+z}\right) ^{n}\frac{dz}{1+z} = \left[ -\frac{1}{n} \left( \frac{-z}{1+z} \right) ^{n} \right] _{0}^{1} - \int_{0}^{1}\left( \frac{-z}{1+z}\right) ^{n-1}\frac{dz}{1+z} = \frac{(-1)^{n+1}}{n2^n} - I_{n-1} \, [/tex]

    a recurrence relation: I'll try using the generating function technique. To be continued...
    Last edited: May 19, 2006
  4. May 19, 2006 #3


    User Avatar
    Homework Helper

    generating functions are sweet

    About that generating function... we will need the value [tex]I_0=\log 2[/tex] (use the series or the integral, both are easy.) From the recurrence relation

    [tex]I_{n}= \frac{(-1)^{n+1}}{n2^n} - I_{n-1} \, [/tex]​

    multiply by [tex]z^n[/tex] and sum over [tex]n\geq 1[/tex] to get

    [tex]G(z):=\sum_{n=1}^{\infty} I_{n}z^{n} = \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n2^n}z^{n} - \sum_{n=1}^{\infty}I_{n-1}z^{n} = \log \left( 1+ \frac{z}{2}\right) -zI_0-z \sum_{n=1}^{\infty}I_{n}z^{n}[/tex]​

    if we put [tex]G(z) = \sum_{n=1}^{\infty} I_{n}z^{n}[/tex] for the generating function, substitute in the value of [tex]I_0=\log 2[/tex] we have

    [tex]G(z)= \log \left( 1+ \frac{z}{2}\right) -z\log 2 -zG(z)[/tex]​

    and hence

    [tex]G(z)= \frac{\log \left( 1+ \frac{z}{2}\right) -z\log 2}{1+z} = \left( \sum_{n=0}^{\infty} (-1)^{n}z^n\right) \left( \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}2^{-n}z^{n}\right) \frac{z}{2} - z\log 2 \sum_{n=0}^{\infty} (-1)^{n}z^n [/tex]
    [tex] = \frac{z}{2}\sum_{n=0}^{\infty} \left( \sum_{k=0}^{n} \frac{(-1)^{k}}{k+1}2^{-k}(-1)^{n-k}\right) z^{n} - \log 2 \sum_{n=1}^{\infty} (-1)^{n-1}z^{n} [/tex]
    [tex] = \sum_{n=1}^{\infty} (-1)^{n-1}\left( \sum_{k=1}^{n} \frac{1}{k2^{k}} \right) z^{n} - \log 2 \sum_{n=1}^{\infty} (-1)^{n}z^{n} = \sum_{n=1}^{\infty} (-1)^{n-1}\left( \sum_{k=1}^{n} \frac{1}{k2^{k}} - \log 2 \right) z^{n} [/tex]​

    so we can now equate coefficients of [tex]z^{n}[/tex] in

    [tex] \sum_{n=1}^{\infty} I_{n}z^{n}= \sum_{n=1}^{\infty} (-1)^{n-1}\left( \sum_{k=1}^{n} \frac{1}{k2^{k}} - \log 2 \right) z^{n} [/tex]​

    to arrive at

    [tex] I_{n}=\int_{0}^{1}\left( \frac{-z}{1+z}\right) ^{n}\frac{dz}{1+z} = (-1)^{n-1}\left( \sum_{k=1}^{n} \frac{1}{k2^{k}} - \log 2 \right) [/tex]​

    which (finally) gives the value of the desired sum

    [tex]\boxed{ \sum_{k=n}^{\infty} \left(\begin{array}{c}k\\n\end{array}\right) \frac{(-1)^k}{k+1} = \left\{\begin{array}{cc}\log 2,&\mbox{ if }
    n=0\\(-1)^{n-1}\left( \sum_{k=1}^{n} \frac{1}{k2^{k}} - \log 2 \right), & \mbox{ if } n\geq 1\end{array}\right. \, }[/tex]​
    Last edited: May 19, 2006
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook