- #1
fluidistic
Gold Member
- 3,946
- 263
Homework Statement
I must use Green's function [itex]\Phi (x)=\int _{\mathbb{R}^3 } \frac{\rho (x')}{|x-x'|}d^3x'[/itex] to calculate the potential and the electric field due to a spherical shell of radius R and unfiform charge density [itex]\sigma _0[/itex].
P.S.:I know I could use Dirac's delta to get the solution faster but I'm asked to do so in another exercise.
Homework Equations
Already given but in my case it reduces to (I believe): [itex]\int _S \frac{\sigma _0 r'^2 \sin \theta d\theta d\phi }{\sqrt{ r^2+r'^2-2rr' \cos \gamma }}[/itex] where [itex]\cos \gamma = \cos \theta \cos \theta '+ \sin \theta \sin \theta ' \cos (\varphi ' - \varphi )[/itex].
The Attempt at a Solution
I assume the potential function phi to be radially symmetrical, in other words I can calculate [itex]\Phi (r)[/itex] and that would be the solution for whatever phi and theta.
Let's say I calculate Phi along the z-axis so that theta=0. This gives [itex]\cos \gamma = \cos \theta '[/itex].
Therefore [itex]\Phi (r)=\int _0^{2\pi } \int _0^{\pi } \frac{r'^2 \sin \theta ' d\theta ' d \varphi ' }{\sqrt {r^2+r'^2-2rr' \cos \theta ' } }[/itex][itex]=2 \pi \sigma _0 \int _0 ^{\pi }\frac{r'^2 \sin \theta ' d \theta ' }{\sqrt {r^2+r'^2 -2rr' \cos \theta ' } } [/itex]. Now I make the change of variable [itex]x=\cos \theta ' \Rightarrow dx=-\sin \theta '[/itex].
And thus [itex]\Phi (r)=2\pi \sigma _0 \int _{-1}^1 \frac{r'^2 dx}{\sqrt {r^2+r'^2-2rr'x} }[/itex]. This is where I'm stuck. Basically r' is a constant... oh wait then I guess I should look into an integral table?
If you see any error feel free to help me.
Edit: The integral is worth [itex]-\frac{\sqrt {r^2-2rr'x+r'^2 } }{rr'} \big | _{-1}^1[/itex].
Giving me [itex]\Phi (r)=\frac{ 2\pi \sigma _0}{rr'} (\sqrt {r^2+r'^2+2rr'}- \sqrt {r^2+r'^2-2rr'} )[/itex]. I'm sure there's an error somewhere, the square roots are "too ugly". By the way [itex]r'=R=\text {constant} [/itex].
Last edited: