Exact Differentials: Proving Existence of u(x,y) in Connected Open Region

  • Thread starter Thread starter STEMucator
  • Start date Start date
  • Tags Tags
    Differentials
STEMucator
Homework Helper
Messages
2,076
Reaction score
140

Homework Statement



Let R be a connected open region ( in the plane ). Suppose that F = (M,N) is a vector function defined on R and is such that for any ( piecewise smooth ) curve C in R :

\int_C Fdp

depends on only the endpoints of C ( that is, any two curves from P1 to P2 in R give the same value for the integral).

Prove that there exists a function u(x,y) defined on R such that ∇u = F.

( i.e ux = M and uy = N )

Homework Equations



Err I think this may have to do with simply connected regions?

The Attempt at a Solution



I'm not quite sure where to start with this one? I'm having trouble seeing how the info provided leads to what I need.

I think it has to do with if R is a simply connected open region and Mdx + Ndy is such that My = Nx in R, then the differential is exact.

Any push in the right direction would be great.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top