Expectatoon value particle in superposition of momentum states

Fixxxer125
Messages
40
Reaction score
0

Homework Statement



Demonstrate the relation between the expectation value and the measurement outcomes of an observable of a particle by conisdering as an observable the kinetic energy operator
E=p^/2m when the particle is in a superposition of 2 momentum eigenstates

Homework Equations



<O> = Int (from -inf -> inf) [(Psi*)O(Psi)] dx


The Attempt at a Solution



I am taking the superposition of 2 momentum eigenstates as

Psi= square root (1/L) [ A*exp(ikx)exp(-iEt/Hbar) +B*exp(ikx)exp(-iEt/Hbar) ]

And then putting this into the integral

<O> = Int (from 0->L) [(Psi*)(-hbar/2m*d2/dx2(Psi)] dx

However I end up with a very long equation for the expectation value whereas I thought the expectation value would be something along the lines of
A2hbar2k12/2m + B2hbar2k22/2m as this looks like an eigenvalue
 
Physics news on Phys.org
I'd take out the \sqrt{1/L} since there's no reason to consider any sort of box here (and besides you can absorb it into the A and B terms). Get rid of the time-dependent bit (since you're going to ignore it anyway - you're integrating over x) and make sure you label your two ks differently, like you have in your final suggestion: k_1 and k_2. And then the approach you're using should work! You seem to have some idea what you expect to find, which is good - if you can't get there post where you get up to.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top