Another way of defining complex numbers is this: the set of complex numbers is the set of ordered pairs of real numbers, (a, b), with addition defined by (a, b)+ (c, d)= (a+ c, b+ d) and multiplication defined by (a, b)*(c, d)= (ac- bd, ad+ bc).
One thing we can show immediately is that pairs with second number, 0, (a, 0), have addition (a, 0)+ (b, 0)= (a+ b, 0+ 0)= (a+ b, 0) and multiplication (a, 0)*(b, 0)= (a*b- 0*0, a*0+ b*0)= (ab, 0) so that we can "identify" the real number, a, with the pair (a, 0) and, in that sense, think of the real numbers as being a "subset" of the complex numbers.
But (0, 1)*(0, 1)= (0*0- 1*1, 0*1+ 1*0)= (-1, 0) so that, in this "number system", unlike the real number, there exist a "complex number" (pair) is -1.
We can write (a, b)= (a, 0)+ (0, b)= a(1, 0)+ b(0, 1). We have already identified (1, 0) with the real number, 1. If we use "i" to represent the pair (0, 1), in the same way that we are using "1" to represent the pair (1, 0), we can write (a, b)= a+ bi in the more usual notation.