How do you compute A - B, B x C, AB, and A(B-A) for given sets?

  • Thread starter Thread starter sapiental
  • Start date Start date
  • Tags Tags
    Computing Sets
sapiental
Messages
110
Reaction score
0

Homework Statement



Let A = {1,3,5,6}, B = {3,5} and C = {a,b,c}

Compute

a. A - B
b. B x C (cartesian product)
c. AB
d. A(B-A)



Homework Equations



Table of set computation in text

The Attempt at a Solution



a. = {1,6}
b. = {(1,3,a),(1,3,b),(1,3,c),(1,5,a),(1,5,b),(1,5,c),(3,3,a),(3,3,b),(3,3,c),(3,5,a),(3,5,b),(3,5,c),
(5,3,a),(5,3,b),(5,3,c),(5,5,a),(5,5,b),(5,5,c),(6,3,a),(6,3,b),(6,3,c),(6,5,a),(6,5,b),(6,5,c)}
c. = {3,5}
d. = null set

First time working with sets, any support helps. Thanks!
 
Physics news on Phys.org
looks good, provided b. asks you to compute A x B x C and not B x C
 
thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top