What are the allowed radii and energy levels in the Bohr model?

AI Thread Summary
The Bohr model accurately predicts energy levels for one-electron atoms, including hydrogen and its ions. The allowed Bohr radii can be derived using the formula involving quantum number N, the charge of the electron, and the nucleus's proton count Z. Kinetic and potential energy equations were discussed, leading to the conclusion that energy levels can be expressed without the variable r. The discussion also included calculating the smallest Bohr orbit radius for a negative muon bound to a nucleus with 97 protons, resulting in a numeric answer of approximately 2.62e-15 meters. The calculations emphasize the importance of adjusting mass for different particles while applying the Bohr model equations.
guitarguy1
Messages
13
Reaction score
0

Homework Statement


The Bohr model
The Bohr model correctly predicts the main energy levels not only for atomic hydrogen but also for other "one-electron" atoms where all but one of the atomic electrons has been moved, as as in He+ (one electron removed) or Li++ (two electrons removed). To help you derive an equation for the N energy levels for a system consisting of a nucleus containing Z protons and just one electron answer the following questions. Your answer may use some or all of the following variables: N, Z, hbar, pi, epsilon0, e and m

(a) What are the allowed Bohr radii?

(b) What is the allowed kinetic energy? Instead of substituting in your answer for part (a) you may use the variable r.

(c) What is the allowed electric potential energy? Instead of substituting in your answer for part (a) you may use the variable r.

(d) Combining your answers from part (a), (b) and (c) what are the allowed energy levels? our answer should not contain the the variable r (use your result from part (a)).

(e) The negative muon (μ-) behaves like a heavy electron, with the same charge as the electron but with a mass 207 times as large as the electron mass. As a moving μ- comes to rest in matter, it tends to knock electrons out of atoms and settle down onto a nucleus to form a "one-muon" atom. Calculate the radius of the smallest Bohr orbit for a μ- bound to a nucleus containing 97 protons and 181 neutrons. Your answer should be numeric and in terms of meters.

Homework Equations



r=N^2(h^2)/((1/4piepsilon0)*e^2*m)

K=1/2*(1/(4piepsilon0)*e^2/r)

Uelectric=-K

The Attempt at a Solution



Well I figured out the answer to part a). It is (N^2(hbar^2/((1/(4piepsilon0))e^2m)))/Z. I just don't know where to go from here. I tried 1/2*(1/(4piepsilon0)*e^2/r) for the kinetic energy, but that was incorrect. I think that I'm just forgetting to add another variable to the equation (possibly the Z) somewhere. I just don't know where. Please help.
 
Physics news on Phys.org


Is there a reason that nobody has made an attempt to answer my question?
 


Alright I figured out what I was doing wrong for parts B, C, and D. I got (1/2)*(Z/(4piepsilon0))*e^2/r for B), -((Z/(4piepsilon0))*e^2/r) for C) and -(1/2)*(Z/(4piepsilon0))*e^2/((N^2(hbar^2/((1/(4piepsilon0))e^2m)))/Z) for D).

I would just like some guidance now on this last part.

(e) The negative muon (μ-) behaves like a heavy electron, with the same charge as the electron but with a mass 207 times as large as the electron mass. As a moving μ- comes to rest in matter, it tends to knock electrons out of atoms and settle down onto a nucleus to form a "one-muon" atom. Calculate the radius of the smallest Bohr orbit for a μ- bound to a nucleus containing 97 protons and 181 neutrons. Your answer should be numeric and in terms of meters.

I think it just involves changing the mass of the, but just using the same answer that I found to part A. Please tell me if I'm heading in the right direction.
 


It is simple once you think about it. You do use the equation from part a. N=1 since the claculated energy level is below .5e-13. hbar = 1.05e-34 J*s. 1/4PiEpsilon = 8.99e9 N*m^2/c^2 and e = 1.60e-19 c. The tricky part is the mass. Since it says the mass is 207 times that of an electron, the mass would be (9.11e-31 * 207). So plug all that into the formula and divide by Z which is the number of proton and you should get an answer like xxxe-15m.

Your answer should be approximately 2.62e-15m
 


gtzpanditbhai said:
It is simple once you think about it. You do use the equation from part a. N=1 since the claculated energy level is below .5e-13. hbar = 1.05e-34 J*s. 1/4PiEpsilon = 8.99e9 N*m^2/c^2 and e = 1.60e-19 c. The tricky part is the mass. Since it says the mass is 207 times that of an electron, the mass would be (9.11e-31 * 207). So plug all that into the formula and divide by Z which is the number of proton and you should get an answer like xxxe-15m.

Your answer should be approximately 2.62e-15m

Thanks. Yea it was simple. I had just gotten so used to putting my answers in terms of variables, I didnt notice that they had asked for a numerical value. : )
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top