Why is the Input Current of Ideal Op-Amps Always Zero?

AI Thread Summary
The input current of an ideal op-amp is considered zero due to its infinite impedance, which effectively means no current flows into the input terminals. This concept simplifies circuit analysis, allowing for the assumption that the inputs behave like open circuits. In contrast, non-ideal op-amps do have small input bias currents, typically around 100nA for bipolar transistor-based designs. The discussion includes a visual representation to illustrate how current behaves in a circuit with an op-amp, emphasizing that while real op-amps draw some current, it is negligible for practical purposes. Understanding these principles is crucial for accurate circuit design and analysis.
Swapnil
Messages
459
Reaction score
6
Hi, I was wondering why is it that the input current for an ideal op-amp is always zero? They say that it is zero because of infinite impedence but where exactly is this impedence? Across the op-amp?
 
Last edited:
Engineering news on Phys.org
Swapnil said:
Hi, I was wondering why is it that the input current for an ideal op-amp is always zero? They say that it is because of infinite impedence but where exactly is this impedence? Across the op-amp?

The input currents of a non-ideal op-amp are not exactly zero. They are close to zero though. My book (Sedra/Smith) says, typical input bias current values for general-purpose op amps that use bipolar transistors are I_B= 100nA

Where:
I_B = \frac{I_{B1}+I_{B2}}{2}

IB1 and IB2 are the currents that you see going into the (-) and (+) terminals.

It is helpful to think of the impedence as being zero in a ideal op amp, because this allows you to perform speedy circuit analysis. You can apply the non ideal conditions later.

Imagine you have the following:************R1
*******------/\/\/-----(n2)
*******|
*******|
(n1)-----=----(n3)

Lets say you connect the positve terminal of a 9-volt battery to n1, and the negative terminal to ground. Now let's say you connect a resistor R1 to the n2 terminal, and the other side of the resistor to ground.

Do you see how a current will flow through the battery through the n1 terminal, it will then hit the 90 degree angle (I marked it with a equals sign), and then it will flow up into the resistor marked R1, and then down through the load we connected into R1 and then to ground. Right?

Well what is the current from the equals sign to (n3)?

It would be zero right?
Notice that this would be the same as saying.

************R1
*******------/\/\/-----(n2)
*******|
*******|
(n1)-----=----/\/\/----(n3)----ground
************Ri

Where Ri = infinite resistance

it would be so nice if there was a LaTeX package for drawing circuits...
 
Thanks for the comprehensive reply but I am a little confused about the drawing. Do n1, n3 and n2 stand for Non-Inverting Input Current, Inverting Input Current and Output Current respectively?
 
woops. I realized I never finished this post.

n1, n2, and n3 just stand for node 1, node 2, node 3.

What I wanted to end up showing you was this,


*******|---------\
*******|********\
*******|*********\
(+ )-----=----(n1)****\
*******************\______()
*******************/
(- )-----=----(n2)****/
*******|*********/
*******|********/
*******|---------/


So n1, n2 stand for node 1 and node 2 again. Now apply the same logic that I showed above to the branch at node 1, and node 2. Think about this branch as being connected to a resistor, and then to ground. If that resistor is has infinite resistance, then it is going to act like an open circuit and you will see zero current in that branch.

Just remember that when you add a little triangle (the circuit symbol for an op amp) and use the non-ideal analysis techniques, you are using a model of a real device. The real device doesn't fit the-non ideal characteristics. However, because of the physics of the device we are able to think of the inputs inside the amp as being open, and thus zero current flows into it. Inside the op-amp are a bunch of transistors that create these properties. Like I said above though, you will see some current being drawn at these branches (and this is specified in the data sheet for the amp), but the amount of current is negligible in most cases. So the non-ideal analysis is usually sufficient.

This is actually what I'm studying right now (undergrad), so I'll do my best to answer. Like always, the more experienced people around here can fill in the gaps.
 
PS - The "lovely" ASCII art above is supposed to be an op amp :)
 
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top