Can e^i(x+y) + e^-i(x+y) be Simplified to 2cosxcosy?

  • Thread starter Thread starter ramses07
  • Start date Start date
  • Tags Tags
    Exponential
ramses07
Messages
11
Reaction score
0

Homework Statement



im wondering if e^i(x+y) + e^-i(x+y)

can be simplified to 2cosxcosy



Homework Equations



2cosx= e^ix + e^-ix



so i separated e^i(x+y) + e^-i(x+y)

into;

e^ix(e^iy) + e^-ix(e^-iy)

can that become 2cosxcosy?
 
Physics news on Phys.org
It's 2*cos(x+y), isn't it? That's not the same thing as 2*cos(x)*cos(y).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top