Express tan(2x) in terms of sin(x) alone.

  • Thread starter Thread starter noob^n
  • Start date Start date
  • Tags Tags
    Terms
noob^n
Messages
5
Reaction score
0

Homework Statement



Express tan(2x) in terms of sin(x) alone.

assuming: pi < x < 3pi/2

Homework Equations



Trig identities

The Attempt at a Solution



sin2x/cos2x

switched for double angle equations;

(2sinx*cosx)/((cosx)^2 - (sinx)^2)

then wherever i go with it, it leads nowhere.
 
Physics news on Phys.org
\cos x=\sqrt{1-\sin^2 x}

\cos{2x}=1-2\sin^2 x
 
Well tan2x=Sin2x/Cos2x then
Sin2x= Tan2x*Cos2x but note that Cos^2(2x)=1/Sec^2(2x) using sec^2(2x)=1+ tan^2(2x) we then get
Sin2x=Tan2x/Sqrt(1+tan^2(2x)) this is all ok but sin2x=2sinxcosx so you need to do the same for cos2x and find cosx in terms of tan2x thus replace it into the expression above.
I hope this helps.
 
Yes I just realized that you can get nicer expression if you see that

cos2x=1/Sqrt(1+tan^2(2x)) then cos2x=1-2sin^2(x)
hence
1-2sin^2(x)=1/(Sqrt(1+tan^2(2x)))
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top