LostInSpace
- 21
- 0
Hi!
I am supposed to write the hyperboloid x^2 + y^2 - z^2=1 as a parametric funktion and find an expression for the tangent plane in an arbitary point in terms of the parameters.
I think I have figured out that the parametric funktion is
<br /> \left\lbrace\begin{array}{ccl}<br /> x &=& \sqrt{1+t^2}\cos\varphi \\<br /> y &=& \sqrt{1+t^2}\sin\varphi \\<br /> z &=& t<br /> \end{array}\right.<br />
And if z = f(x,y), the tangent plane for the point (x_0, y_0, f(x_0, y_0)) is given by
<br /> f_t(x,y) = f(x_0, y_0) + \frac{\partial f(x_0, y_0)}{\partial x}(x-x_0) + \frac{\partial f(x_0, y_0)}{\partial y}(y - y_0)<br />
which in this case is evaluates to
<br /> f_t(x,y) = \sqrt{x_0^2 + y_0^2 - 1} + \left(\frac{x_0}{\sqrt{x_0^2+y_0^2-1}}\right)(x-x_0) + \left(\frac{y_0}{\sqrt{x_0^2+y_0^2-1}}\right)(y - y_0)<br />
Hope I'm right so far...
How am I supposed to express f_t(x,y) in terms of the parameters (t, \varphi)?
Thanks in advance!
I am supposed to write the hyperboloid x^2 + y^2 - z^2=1 as a parametric funktion and find an expression for the tangent plane in an arbitary point in terms of the parameters.
I think I have figured out that the parametric funktion is
<br /> \left\lbrace\begin{array}{ccl}<br /> x &=& \sqrt{1+t^2}\cos\varphi \\<br /> y &=& \sqrt{1+t^2}\sin\varphi \\<br /> z &=& t<br /> \end{array}\right.<br />
And if z = f(x,y), the tangent plane for the point (x_0, y_0, f(x_0, y_0)) is given by
<br /> f_t(x,y) = f(x_0, y_0) + \frac{\partial f(x_0, y_0)}{\partial x}(x-x_0) + \frac{\partial f(x_0, y_0)}{\partial y}(y - y_0)<br />
which in this case is evaluates to
<br /> f_t(x,y) = \sqrt{x_0^2 + y_0^2 - 1} + \left(\frac{x_0}{\sqrt{x_0^2+y_0^2-1}}\right)(x-x_0) + \left(\frac{y_0}{\sqrt{x_0^2+y_0^2-1}}\right)(y - y_0)<br />
Hope I'm right so far...
How am I supposed to express f_t(x,y) in terms of the parameters (t, \varphi)?
Thanks in advance!
Last edited: