Expressing moment of inertia in terms of m,a,r and g

AI Thread Summary
The discussion focuses on deriving the moment of inertia (I) of a platform in terms of mass (m), acceleration (a), radius (r), and gravitational constant (g). The key equations involve net force and torque, with the relationship between tension (T), mass, and acceleration being central to the solution. The final expression for moment of inertia is confirmed as I = (g/a - 1)mr^2 after a series of algebraic manipulations. Participants emphasize the importance of clear algebraic presentation for better understanding. The solution is validated, highlighting the collaborative effort in resolving the problem.
GMontey
Messages
3
Reaction score
0

Homework Statement



Find an expression for the moment of inertia (I) of the platform in terms of acceleration of the mass (a), the value of the hanging mass (m), the radius of the spindle (r) and the constant (g).

Diagram: http://i.imgur.com/rv3zFYG.jpg

Homework Equations


F=ma t=Iα a=rα


The Attempt at a Solution


Net force: mg-T=ma (T is tension of spring)
Net torque: T-tf=Iα (T is tension of spring, tf is torque)
T=1/2ma

Apparently the answer is: I= (g/a-1)mr^2 but I'm having some trouble getting there.
 
Physics news on Phys.org
GMontey said:

The Attempt at a Solution


Net force: mg-T=ma (T is tension of spring)
tension in the what? "string" perhaps?

Net torque: T-tf=Iα
T is not a torque so you cannot subtract a torque from it - dimensions don't match. What is the relationship between torque and force?

(T is tension of spring, tf is torque)
T=1/2ma
How did you get that?

You have the right approach - start with free-body diagrams for each element.
But you need to be careful about your math.

i.e. for the mass: +ve = "down": ##mg-T=ma##

i.e. how many torques are acting on the flywheel?
 
How did you calculate T=1/2ma?

Also note that tf=T*rWELCOME TO PF!
 
I believe I solved it thanks to all of your help. The forces acting on the mass are gravity (mg) and the tension of the string (T). There is one torque acting on the spindle ( tf). The net torque on the mass is mg - T= ma which can be rewritten as T= mg - ma. The net torque on the spindle is tf =Iα. tf can be rewritten as Txr and I can substitute mg - ma for T, so now I have (mg - ma)xr =Iα. a =αr and I can rearrange this so α =a/r, which I can then substitute into (mg - ma)xr =Iα. Now I have (mg - ma)xr =I(a/r), using some algebra I can rearrange the equation into (mg - ma)xr x(r/a). Now I have (mg - ma)r^2/a, with more algebra I have (mg/a-ma/a)r^2 =I which simplifies to [(mg/a)-m]r^2= I. I pull out m and have (g/a-1)mr^2 =I, please tell me this is right...?
 
Well done - though it's a little hard to read.
I'd have just left it as $$I=\frac{g-a}{a}mr^2$$ but it is nice if it looks like the model answer.
(you want the mr^2 together because that is the moment of inertia of a point mass...)

Just a tip - it is easier to read your algebra if you lay it out like you would when you write.
i.e give each statement it's own line like this:

The forces acting on the mass are gravity (mg) and the tension of the string (T).
There is one torque acting on the spindle ( tf).
The net torque on the mass is mg - T= ma which can be rewritten as

T= mg - ma

The net torque on the spindle is tf =Iα.
tf can be rewritten as Txr and I can substitute mg - ma for T, so now I have

(mg - ma)xr =Iα.

a =αr and I can rearrange this so α =a/r, which I can then substitute into (mg - ma)xr =Iα.
Now I have

(mg - ma)xr =I(a/r)

... using some algebra I can rearrange the equation into (mg - ma)xr x(r/a).
Now I have

(mg - ma)r^2/a

... with more algebra I have

(mg/a-ma/a)r^2 =I

... which simplifies to

[(mg/a)-m]r^2= I

... I pull out m and have

(g/a-1)mr^2 =I
 
Huzzah! Thank you very much for both helping me and organizing my mess!
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top