Expressing plane wave as superposition

Ishida52134
Messages
138
Reaction score
0

Homework Statement


So, given a unpolarized monochromatic plane wave E = summation ai cos(kz - wt + bi), i from 1 to N where b is a phase constant. how would you describe this as the superposition of a right handed and left handed polarized beam?

Homework Equations


Er = Acos(kz-wt+phi1) + A sin(kz-wt+phi1)
El = Acos(kz-wt+phi2) - Asin(kz-wt+phi2)

The Attempt at a Solution


I know if I add both up I would get a linearly polarized wave.
I'm not sure how to write the sum as such a summation. Would you use the fact that any finite linear combinations of cosine terms can add up to the sum which would show that the summation can be written in terms of one cosine function?
 
Last edited:
Physics news on Phys.org
Have you tried expanding each term in the sum as a linear sum of specific Er and El.
 
I think it'd be the superposition of one right and one left circular polarized beam that describes the whole summation.
 
Good luck with that.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top