sandy.bridge
- 797
- 1
Homework Statement
Find extreme values for
f(x, y, z)=x+y+z
subject to:
x^4+y^4+z^4=c>0
Therefore, since c>0, exclude the origin.
Let L(x, y, z, \lambda{)}=x+y+z+\lambda{(}x^4+y^4+z^4-c)
and thus
L_1(x, y, z, \lambda{)}=1+4x^3\lambda
L_2(x, y, z, \lambda{)}=1+4y^3\lambda
L_3(x, y, z, \lambda{)}=1+4z^3\lambda
L_4(x, y, z, \lambda{)}=x^4+y^4+z^4-c
with solutions
x=y=z=(-1/4\lambda{)}^{1/3}
and
0=((-1/4\lambda{)}^{1/3})^4+((-1/4\lambda{)}^{1/3})^4+((-1/4\lambda{)}^{1/3})^4-c=3((-1/4\lambda{)}^{1/3})^4-c
c=-1/(4c^{3/4})
and since c>0, the question has no solutions.