unscientific
- 1,728
- 13
The Faraday Tensor is given by:
Consider the following outer product with the 4-potential:
The Faraday Tensor is related to the 4-potential:
F^{mn} = \Box^{m} A^n - \Box^n A^m
For example, ## F^{01} = -\frac{1}{c} \frac{\partial A^x}{\partial t} - \frac{1}{c}\frac{\partial \phi}{\partial x} ##
How do I show that ## \frac{E_x}{c} = -\frac{1}{c} \frac{\partial A^x}{\partial t} - \frac{1}{c}\frac{\partial \phi}{\partial x} ##?
Consider the following outer product with the 4-potential:
The Faraday Tensor is related to the 4-potential:
F^{mn} = \Box^{m} A^n - \Box^n A^m
For example, ## F^{01} = -\frac{1}{c} \frac{\partial A^x}{\partial t} - \frac{1}{c}\frac{\partial \phi}{\partial x} ##
How do I show that ## \frac{E_x}{c} = -\frac{1}{c} \frac{\partial A^x}{\partial t} - \frac{1}{c}\frac{\partial \phi}{\partial x} ##?