Faraday's law and Magnetic Fields

AI Thread Summary
The discussion focuses on correcting a formula related to Faraday's law and magnetic fields, emphasizing the need for proper dimensions on the right-hand side of the equation. Participants noted that the formula should simplify to the magnetic field at the center of a circular current loop when x equals zero. There was a clarification regarding the vector form of the expression, which initially lacked the appropriate unit vector notation. After adjustments were made, it was suggested that a reasonable answer should now be achievable. The conversation highlights the importance of precision in mathematical expressions related to electromagnetic theory.
maksym_slnc
Messages
2
Reaction score
0
Homework Statement
A very large loop of metal wire with radius 1 meter is driven with a linearly increasing current at a rate of 200 amps/second . A very small metal wire loop with radius 5 cm is positioned a small distance away with its center on the same axis (the loops are coaxial). The small loop experiences an induced emf of 983nV . What is the separation of the loops in meters?
Relevant Equations
$$
\varepsilon=\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{l}}=-\frac{d \Phi_{\mathrm{m}}}{d t} .
$$
${\mathbf{B}}=\frac{\mu_0 I \hat{\mathbf{j}}}{2 \pi\left(y^2+R^2\right)^{3 / 2}}$
1682079672875.png

I am not really sure which direction i am moving in with this solution
 
Physics news on Phys.org
1682087140381.png
Check this formula. Note that that the right-hand side does not have the correct dimensions for magnetic field. Also, check the numerical factors in the equation. For ##x = 0## the formula should reduce to the field at the center of a circular current loop.

Otherwise, your approach looks correct.
 
Last edited:
TSny said:
Check this formula. Note that that the right-hand side does not have the correct dimensions for magnetic field. Also, check the numerical factors in the equation. For ##x = 0## the formula should reduce to the field at the center of a circular current loop.

Otherwise, your approach looks correct.
Oh, thanks a lot, it was a vector form, but without the i hat. Correct expression was this one.
correct expression.png
 
maksym_slnc said:
Oh, thanks a lot, it was a vector form, but without the i hat. Correct expression was this one.View attachment 325234
Ok. You should get a reasonable answer now.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top