Charles Link said:
Letting ## C=\frac{dB}{dt} ##, I get the EMF for the 3 outer circular arcs is ## \mathcal{E}_o=\frac{C \pi a^2}{3} ##, and (assuming I computed it correctly), I get the EMF for each of the three straight line segments is ## \mathcal{E}_i= \frac{C \sqrt{3} a^2}{4} ##. It should be a simple matter to then compute all of the currents, using Kirchhoff's laws. It requires 6 loop equations. There are 6 currents to solve for. ## \\ ##
@vanhees71 I will try to double-check my calculations, but might you concur?
I think I have complete solution, but it would be easy to have mistake. Going clockwise around the outer loop, starting with CA, and calling currents ##i_1,i_2,i_3 ##, and similarly around the triangle, ##i_4,i_5, i_6 ##, I get ##\\ ## ##i_1=\frac{9}{2}M-\frac{7}{8}N ## ##\\ ## ##i_2=\frac{45}{2}M-\frac{35}{8}N ##
## i_3=6M-\frac{5}{4}N ##
## i_4=\frac{21}{4}M-\frac{21}{16}N ##
## i_5=\frac{-51}{4}M+\frac{35}{16}N ##
##i_6=\frac{15}{4}M-\frac{15}{16}N ##
where
##M=\frac{D}{r_1} ## and
##N=\frac{9E}{2 r_1} ##
where
## D=Ca^2(\frac{\pi}{3}-\frac{\sqrt{3}}{4}) ## and
##E=Ca^2 (\frac{\sqrt{3}}{4}) ##.
My solution might contain errors, but this is what I got in solving the 6 loop equations. ===============================================================================
Corrections (3-27-19):
================================================================================
##i_1=i_2=M+\frac{7}{36}N ##
##i_3=M+\frac{5}{18}N ##
##i_4=i_5=+\frac{7}{24}N ##
##i_6=+\frac{5}{24}N ## (Note: I corrected ##I_4,I_5,I_6 ## a second time at 7:30 PM 3-27-19 and corrected again 3-28-19 at 10:45 AM where I had the sign on N reversed.).