Fermi-dirac statistics, Griffiths 5.28

Elvex
Messages
11
Reaction score
0

Homework Statement


Evaluate the integrals (eqns 5.108 and 5.109) for the case of identical fermions at absolute zero.


Homework Equations



5.108
N=\frac{V}{2\pi^{2}}\int_{0}^{\infty}\frac{k^2}{e^{[(\hbar^{2}k^{2}/2m)-\mu]/kT}+1}dk

5.109
E=\frac{V}{2\pi^2}\frac{\hbar^2}{2m}\int_0^{\infty}\frac{k^4}{e^{[(\hbar^{2}k^{2}/2m)-\mu]/kT}+1}dk

The Attempt at a Solution



Ok so at absolute zero, the chemical potential is equal to the fermi energy E_f. I'm not sure how to approach either integral because of the T dependence in the denominator in the argument of the exponential.
Aren't there two cases, one for the energy of the state being above the chemical potential, and another for it being less than.
If the energy is less, then the argument goes to - infinite, and the integral is just of k^2, from 0 to infinite... that doesn't seem right.
If the energy is greater than mu, then the argument goes to positive infinite, and the integrand goes to 0. Fantastic.

There's got to be something going on with the expressions in the argument of hte exponential to give a reasonable integrand for T=0.
I think I'm missing some crucial observation.
 
Physics news on Phys.org
Look at equations [5.103] and [5.104].
 
OK, so for the first integral. I have a feeling that I need to change the limits of integration because once I get to k values that exceed the Fermi-Energy, the integrand goes to zero, so setting the upper limit to a specific k value will ensure convergence as well.

Oh ok, this is the probably the same method for the second integral as well.
 
Elvex said:
OK, so for the first integral. I have a feeling that I need to change the limits of integration because once I get to k values that exceed the Fermi-Energy, the integrand goes to zero, so setting the upper limit to a specific k value will ensure convergence as well.

Oh ok, this is the probably the same method for the second integral as well.

Yes, in both cases you must integrate up to k_F only (the k value at the Fermi energy).
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top