Emil_M
- 45
- 2
\
Show that the Fidelity between one pure state |\Psi\rangle and one arbitrary state \rho is given by F(|\Psi\rangle , \rho)=\sqrt{\langle\Psi|\rho|\Psi\rangle} .
The quantum mechanical fidelity is defined as <br /> \begin{equation*}<br /> F(\rho,\sigma):= Tr{ \sqrt{\rho^{\frac{1}{2}} \sigma \rho^{\frac{1}{2}}}}<br /> \end{equation*}<br />
The operator corresponding to |\Psi\rangle is \sigma=|\Psi\rangle\langle\Psi|.
We can make use of the spectral decomposition of \sigma in order to write
<br /> \begin{equation*}<br /> \sigma=\sum_{j=1}^N s_j |j\rangle\langle j|<br /> \end{equation*} <br />
It follows, that the Fidelity F(\sigma, \rho) is given by
\begin{align*}
F(\sigma, \rho) & =Tr{\sqrt{\left(|\Psi\rangle\langle\Psi|\right)^{\frac{1}{2}}\rho\left(|\Psi\rangle\langle\Psi|\right)^{\frac{1}{2}}}} \\
&= Tr{\sqrt{|\Psi\rangle\langle\Psi|\rho|\Psi\rangle\langle\Psi|}}\\
&= Tr{\sqrt{\langle\Psi|\rho|\Psi\rangle\;|\Psi\rangle\langle\Psi|}}\\
&= Tr{\sqrt{\langle\Psi|\rho|\Psi\rangle\sum_{j=1}^N s_j |j\rangle\langle j|}}\\
&=\sqrt{\langle\Psi|\rho|\Psi\rangle} \; Tr \sum_{j=1}^N \sqrt{s_j} |j\rangle\langle j|\\
&=\sqrt{\langle\Psi|\rho|\Psi\rangle} \; \sum_{k,j=1}^N \sqrt{s_j} \langle k|j\rangle\langle j|k\rangle\\
&=\sqrt{\langle\Psi|\rho|\Psi\rangle} \; \sum_{j=1}^N \sqrt{s_j}
\end{align*}
This is not the expected result, so I have made a mistake somewhere along the way. I would be really thankful if somebody were to spot it!
Thanks in advance
Homework Statement
Show that the Fidelity between one pure state |\Psi\rangle and one arbitrary state \rho is given by F(|\Psi\rangle , \rho)=\sqrt{\langle\Psi|\rho|\Psi\rangle} .
Homework Equations
The quantum mechanical fidelity is defined as <br /> \begin{equation*}<br /> F(\rho,\sigma):= Tr{ \sqrt{\rho^{\frac{1}{2}} \sigma \rho^{\frac{1}{2}}}}<br /> \end{equation*}<br />
The Attempt at a Solution
The operator corresponding to |\Psi\rangle is \sigma=|\Psi\rangle\langle\Psi|.
We can make use of the spectral decomposition of \sigma in order to write
<br /> \begin{equation*}<br /> \sigma=\sum_{j=1}^N s_j |j\rangle\langle j|<br /> \end{equation*} <br />
It follows, that the Fidelity F(\sigma, \rho) is given by
\begin{align*}
F(\sigma, \rho) & =Tr{\sqrt{\left(|\Psi\rangle\langle\Psi|\right)^{\frac{1}{2}}\rho\left(|\Psi\rangle\langle\Psi|\right)^{\frac{1}{2}}}} \\
&= Tr{\sqrt{|\Psi\rangle\langle\Psi|\rho|\Psi\rangle\langle\Psi|}}\\
&= Tr{\sqrt{\langle\Psi|\rho|\Psi\rangle\;|\Psi\rangle\langle\Psi|}}\\
&= Tr{\sqrt{\langle\Psi|\rho|\Psi\rangle\sum_{j=1}^N s_j |j\rangle\langle j|}}\\
&=\sqrt{\langle\Psi|\rho|\Psi\rangle} \; Tr \sum_{j=1}^N \sqrt{s_j} |j\rangle\langle j|\\
&=\sqrt{\langle\Psi|\rho|\Psi\rangle} \; \sum_{k,j=1}^N \sqrt{s_j} \langle k|j\rangle\langle j|k\rangle\\
&=\sqrt{\langle\Psi|\rho|\Psi\rangle} \; \sum_{j=1}^N \sqrt{s_j}
\end{align*}
This is not the expected result, so I have made a mistake somewhere along the way. I would be really thankful if somebody were to spot it!
Thanks in advance
Last edited: