discordplus
- 9
- 0
Homework Statement
Coulomb force between line charges: a rod of length l1 with line charge density λ1 and a rod of length l2 with line charge density λ2 lie on the x axis. Their ends are separated by a distance D as shown in the figure.
(a) What is the force F between these charges?
diagram: http://ocw.mit.edu/NR/rdonlyres/Physics/8-022Fall-2004/3A772032-6B74-4D2D-A550-8F0ECFECEDBC/0/pset1.pdf
#7
Homework Equations
E = \frac{1}{4\pi\epsilon}\int\frac{dq}{r^2}
F = \int E dq
The Attempt at a Solution
So, first I decided to find the field at a point a distance D from the end of line 1. Using the standard x coordinate system, I placed line 1 such that its endpoints are 0, l_{1}.
E = \frac{1}{4\pi\epsilon}\int\frac{dq}{r^2}
Limits of integration being (0,
Using this and dq = dl_{1}\lambda_{1}, all I need to do is find a function for r in terms of l, which is the distance from 0. Which would be (l_{1} + D) - l.
I renamed (l_{1} + D) as the variable a to make the integration simpler. So now I have:
E = \frac{\lambda_{1}}{4\pi\epsilon}\int \frac{dl}{(a - l)^2}
which is just \frac{\lambda_{1}}{4\pi\epsilon} *\frac{1}{a-l_{1}}
and because a = d + l_{1}
I get the E Field being E = \frac{\lambda_{1}}{4d\pi\epsilon}
Is this correct so far? Clearly my success on the second part depends on that because all I have to do is just integrate the field over the infinitesimal segments of charge over the second line's length yes? And to find that distance d as a function of l it's just ( l - length 1), where l is the distance from the 0 point. I'm just kind of shaky on the first part, finding the field, that's all.
Last edited by a moderator: