Can You Prove the Equality of Field Theories with Different Prime Numbers?

ElDavidas
Messages
78
Reaction score
0

Homework Statement



Show Q(\sqrt{p},\sqrt{q}) = Q(\sqrt{p} + \sqrt{q})

Homework Equations



p and q are two different prime numbers

The Attempt at a Solution



I can show \sqrt{p} + \sqrt{q} \in Q(\sqrt{p},\sqrt{p})

I have trouble with the other direction though, i.e \sqrt{p},\sqrt{p} \in Q(\sqrt{p} + \sqrt{q}).

So far I've let \alpha = \sqrt{p} + \sqrt{q}

and found the powers \alpha^2 = p + q + 2 \sqrt{p}\sqrt{q} and \alpha^3 = (p + 3q )\sqrt{p} + (3p + q)\sqrt{q}

Not sure what to do now though.
 
Physics news on Phys.org
So you know that
\sqrt{p} + \sqrt{q}

and

(p + 3q )\sqrt{p} + (3p + q)\sqrt{q}

are in the field. That is all you need. HINT: think simlutaneous linear equations.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top