Find 4-D Volume of R^7 Vector in R^7

  • Thread starter Thread starter calvino
  • Start date Start date
  • Tags Tags
    Volume
calvino
Messages
108
Reaction score
0
I have to find the 4-dimensional volume of {s'v' + s''v'' + s'''v''' +s''''v'''': 0<= s',s'',s''',s'''' <=1 }

in R^7, where v' = (1,1,0,1,0,0,1)^T,
v''=(1,0,0,1,1,0,0)^T
v'''=(0,0,1,1,1,0,0)^T
v''''=(0,0,0,0,1,1,1)^T


So I decided to try and take the determinant of the matrix which holds these vectors, by expanding along the 1st row consisting of elementary coordinates.

| e1 e2 e3 e4 e5 e6 e7 |
| 1 1 0 1 0 0 1 |
| 1 0 0 1 1 0 0 |
| 0 0 1 1 1 0 0 |
| 0 0 0 0 1 1 1 |


But, ummm... as you might already know, it doesn't work out. What do I do?
 
Physics news on Phys.org
clarifying, all the s,v are scalars, vectors respecively...by "^T", i just meant to write transpose...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top