Find a linear fractional transformation that carries circle to a line.

StumpedPupil
Messages
11
Reaction score
0

Homework Statement



Define L: |z| = 1 -----> Re( (1 + w)) = 0. Find L.

Homework Equations



A transformation is defined by three unique points by T(z) = (z-z1)(z2-z3) / (z-z3)(z2-z1). If we have two transformations T and S, and we want T = S for three distinct points, then we have the transformation L by the transformation S^(-1)[T(z)].

The Attempt at a Solution



I chose the points on the circle 1, i, and -1 to go to the points infinity, 0 and 1+i respectively. My calculations gave me L(z) = (1+i)((z-i) - (z+1))(infinity) / ((infinity)(z-1)i - (z+1)(1+i)). The book gives me u(1-i)(z+1)/(z-1) where u is any real number.

What should I do to get this simple form (aka the right answer). Thank you.

 
Physics news on Phys.org
Why are you mapping points to 0 and 1 + i? Doesn't Re(1 + w) = 0 represent a vertical line?

Cancel out the terms containing infinity.
 
I'm sorry, that is a typo. I meant to write Re((1 + i)w) = 0. This is the line y = x. I choose two points on this line, and a point at infinity.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top