Find all positive integers n such that 3x^2-y^2=2018^n has an integer solution

littlemathquark
Messages
204
Reaction score
26
Homework Statement
Find all positive integers ##n## such that ##3x^2-y^2=2018^n## has integer solutions.
Relevant Equations
None
I need an idea. Thank you.
 
Physics news on Phys.org
If ##n## is even consider the equation modulo ##3.##

The hard part is to show that odd ##n## actually do have solutions.
 
##3x^2-y^2\equiv 2018^n\mod 3## $$-y^2\equiv 2^n\equiv 1\mod 3$$ $$y^2\equiv 2\mod 3$$ but it is impossible so ##n## must be odd.
 
littlemathquark said:
##3x^2-y^2\equiv 2018^n\mod 3## $$y^2\equiv 2^n\equiv 1\mod 3$$
This is wrong. Use the assumption that ##n## is even.

(For odd ##n## show that ##3x^2-x^2\equiv 2018^n## has always a solution if ##3x^2-x^2\equiv 2018## has a solution. So you will be left with the case ##n=1.##)
 
I mean if n is even ##y^2\equiv 2\mod3## but it is impossible so n must be odd.
 
littlemathquark said:
I mean if n is even ##y^2\equiv 2\mod3## but it is impossible so n must be odd.
Right.

Now show that if ##3a^2-b^2=2018## then there will be a solution for all ##3y^2-x^2=2018^n## if ##n## is odd.
 
$$3x^2=y^2+2018\implies x^2\geq \frac{2018}{3}\implies x\geq 26.$$ For ##x=27## , ##y=13## satisfy equation.
 
littlemathquark said:
$$3x^2=y^2+2018\implies x^2\geq \frac{2018}{3}\implies x\geq 26.$$ For ##x=27## ##y=13##
That's not what I said. This will be the third and last step but first, make the second. What does it mean that ##n## is odd?
 
If n is odd then ##n=2k+1##
 
  • #10
littlemathquark said:
If n is odd then ##n=2k+1##
Yes. Go ahead. How can you corstruct a solution for ##3x^2-y^2=2018^{2k+1}=2018\cdot (2018^{k})^2## if you have a solution ##3a^2-b^2=2018##?
 
  • #11
##3a^2.2018^{2k}-b^2.2018^{2k}=2018^{2k+1}##
 
  • #12
littlemathquark said:
##3a^2.2018^{2k}-b^2.2018^{2k}=2018^{2k+1}##
Yes. I would have written it as
$$
3x^2-y^2=2018^n=2018\cdot 2018^{2k}=
(3a^2-b^2)\cdot 2018^{2k}=3\cdot (a\cdot 2018^k)^2 - (b\cdot 2018^k)^2
$$
but yes.

So what is the answer to your initial question then?
 
  • #13
##3a^2.2018^{2k}-b^2.2018^{2k}=2018^{2k+1}## İf ##a=27## and ##b=13## then ##x=(27.2018^k)## and ##y=(13.2018^k)## are solutions. Thank you very much. But are these all solutions? Are there other solutions?
 
  • #14
littlemathquark said:
##3a^2.2018^{2k}-b^2.2018^{2k}=2018^{2k+1}## İf ##a=27## and ##b=13## then ##x=(27.2018^k)## and ##y=(13.2018^k)## are solutions. Thank you very much. But are these all solutions? Are there other solutions?
There are infinitely many solutions. With ##n,m\geq 0## these are (for ##2018##)
\begin{align*}
3x_n^2-y_n^2&=2018\\[6pt]
x_n &= \pm \dfrac{1}{6} \left(-81 (2 - \sqrt{3})^n + 13 \sqrt{3} (2 - \sqrt{3})^n - 81 (2 + \sqrt{3})^n - 13 \sqrt{3} (2 + \sqrt{3})^n\right)\\
y_n &= \pm \dfrac{1}{2} \left(-13 (2 - \sqrt{3})^n + 27 \sqrt{3} (2 - \sqrt{3})^n - 13 (2 + \sqrt{3})^n - 27 \sqrt{3} (2 + \sqrt{3})^n\right)\\[12pt]
3\hat x_m^2-\hat y_m^2&=2018\\[6pt]
\hat x_m &= \pm \dfrac{1}{6} \left(81 (2 - \sqrt{3})^m + 13 \sqrt{3} (2 - \sqrt{3})^m + 81 (2 + \sqrt{3})^m - 13 \sqrt{3} (2 + \sqrt{3})^m\right)\\
\hat y_m &= \pm \dfrac{1}{2} \left(13 (2 - \sqrt{3})^m + 27 \sqrt{3} (2 - \sqrt{3})^m + 13 (2 + \sqrt{3})^m - 27 \sqrt{3} (2 + \sqrt{3})^m\right)\\[12pt]
x_0&=\hat x_0=27\\
y_0&=\hat y_0=13\\[6pt]
x_1&=67\\
y_1&=107\\[6pt]
\hat x_1&=41\\
\hat y_1&=55\\[6pt]
\ldots \; etc.
\end{align*}
But I used Wolfram Alpha for it. I haven't found them myself. But your idea to find ##(27,13)## was nice. The solutions for higher odd powers of ##2018## are as described above:
$$
2018^{2k+1}=3(x_n\cdot 2018^k)^2-(y_n\cdot 2018^k)^2\, , \,2018^{2k+1}=3(\hat x_m\cdot 2018^k)^2-(\hat y_m\cdot 2018^k)^2
$$
 
Last edited:
  • Like
Likes littlemathquark
  • #15
The way we followed here was a typical one:

1.) Eliminate the impossible cases (##n=2k##) by a modulo consideration.
2.) Reduce the general case (##n=2k+1##) to the simple case (##n=1##).
3.) Solve the simple case (##(x,y)=(27,13)##).
 
  • Like
Likes littlemathquark
  • #16
I added the rest of the solutions and another two examples of low values in post #14 for completion.
 
Back
Top