Can the Roots of x^4 + 7x^2 + 6 = 0 be Imaginary?

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Function Roots
Dustinsfl
Messages
2,217
Reaction score
5
x^4 + 7x^2 + 6 =0

I know the answers are imaginary but I don't remember how to solve this equation.
 
Physics news on Phys.org
Let t=x^2 and solve for t. Then once you have t, you can easily find x.
 
If I do that and solve for t, I obtain two real solutions when all 4 all imaginary.
 
using quadratic formula:

x^2=\frac{-7\pm \sqrt{49-24}}{2}
x^2=\{-6,-1\}

both values of x^2 for negative, so all 4 values of x are imaginary. Check your working?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top