Find an Orthonormal Basis for Linear Algebra A

Bob
Messages
28
Reaction score
0
A=\left(\begin{array}{cc}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\end{array}\right)

Find an orthonomal basis for N(A^T)

:smile:
 
Last edited:
Physics news on Phys.org
What is N(A^T)? I know what A^T means, but what does the N of it mean?
 
The null space. The set of all vector, v, such that ATv= 0.

Bob, write v as (a, b, c, d) and write out the two equations corresponding to ATv= 0. Simplify them.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top