Find Common Difference of A.P. Given G.P. & Logarithms

Click For Summary
SUMMARY

The forum discussion centers on finding the common difference of an arithmetic progression (A.P.) formed by the logarithms of terms in a geometric progression (G.P.). The initial claim of a common difference of $\frac{3}{2}$ is refuted, with the correct common difference being $-\frac{5}{12}$ or $0$, depending on the values of $a$, $b$, and $c$. The participants clarify the relationships between the logarithmic values and their respective bases, ultimately confirming that if $a$, $b$, and $c$ are in G.P., then the logarithmic values must satisfy specific equations leading to the correct common difference.

PREREQUISITES
  • Understanding of geometric progression (G.P.) and arithmetic progression (A.P.) concepts.
  • Familiarity with logarithmic properties and transformations.
  • Ability to manipulate algebraic equations involving logarithms.
  • Knowledge of cubic equations and their solutions in the context of logarithmic functions.
NEXT STEPS
  • Study the properties of logarithms in depth, focusing on change of base formulas.
  • Learn how to derive relationships between logarithmic expressions in G.P. and A.P.
  • Explore cubic equations and their applications in solving logarithmic problems.
  • Practice problems involving logarithmic identities and their implications in sequences.
USEFUL FOR

Mathematicians, educators, and students studying advanced algebra, particularly those interested in sequences and series involving logarithmic functions.

WMDhamnekar
MHB
Messages
378
Reaction score
30
If a,b, c, are in G.P and $\log_ba, \log_cb,\log_ac$ are in A.P. I want to find the common difference of A.P.

Answer:

After doing some computations, I stuck here. $\frac{2(\log a+\log r)}{\log a+2\log r}=\frac{2(\log a)^2+3\log r\log a +2(\log r)^2}{(\log a)^2+\log r\log a}$

How to proceed further? (a= 1st term in G.P. r= common ratio of G.P.)
Answer is $\frac32$. I don't understand how it is computed. If any member knowing further computations to arrive at the answer, may reply.
 
Last edited:
Mathematics news on Phys.org
Hi Dhamnekar Winod.

I got the answer $-\dfrac5{12}$ or $0$ (the latter being the trivial case $a=b=c$). Either the given answer is wrong or (which IMHO is the more likely) you made a typo copying the question.

Assuming you copied the question correctly, however, this is my solution.

If $a$,$b$,$c$ are in GP, then

$b\ =\ \sqrt{ac}$ (assuming $a,b,c$ are all positive, which appears to be what the question is doing)​

$\implies\ \log_ab\ =\ \dfrac{1+\log_ac}2$.

If $\log_ab$, $\log_cb$, $\log_ac$ are in AP, then
$$\log_cb\ =\ \frac{\log_ab}{\log_ac}\ =\ \frac{\log_ab+\log_ac}2$$
and substituing for $\log_ab$,
$$\frac{\frac{1+\log_ac}2}{\log_ac}\ =\ \frac{\frac{1+\log_ac}2+\log_ac}2$$
which becomes
$$3\left(\log_ac\right)^2-\log_ac-2\ =\ \left(3\log_ac+2\right)\left(\log_ac-1\right)\ =\ 0$$

$\implies\ \log_ac=-\dfrac23\ \text{or}\ 1$.

In the former case, $\log_ab=\dfrac16$ and $\log_cb=-\dfrac14$ – and you can check that
$$\frac16,\ -\frac14,\ -\frac23$$
is an AP with common difference $-\dfrac5{12}$.
 
Last edited:
Olinguito said:
Hi Dhamnekar Winod.

I got the answer $-\dfrac5{12}$ or $0$ (the latter being the trivial case $a=b=c$). Either the given answer is wrong or (which IMHO is the more likely) you made a typo copying the question.

Assuming you copied the question correctly, however, this is my solution.

If $a$,$b$,$c$ are in GP, then
$b\ =\ \sqrt{ac}$ (assuming $a,b,c$ are all positive, which appears to be what the question is doing)​

$\implies\ \log_ab\ =\ \dfrac{1+\log_ac}2$.

If $\log_ab$, $\log_cb$, $\log_ac$ are in AP, then
$$\log_cb\ =\ \frac{\log_ab}{\log_ac}\ =\ \frac{\log_ab+\log_ac}2$$
and substituing for $\log_ab$,
$$\frac{\frac{1+\log_ac}2}{\log_ac}\ =\ \frac{\frac{1+\log_ac}2+\log_ac}2$$
which becomes
$$3\left(\log_ac\right)^2-\log_ac-2\ =\ \left(3\log_ac+2\right)\left(\log_ac-1\right)\ =\ 0$$

$\implies\ \log_ac=-\dfrac23\ \text{or}\ 1$.

In the former case, $\log_ab=\dfrac16$ and $\log_cb=-\dfrac14$ – and you can check that
$$\frac16,\ -\frac14,\ -\frac23$$
is an AP with common difference $-\dfrac5{12}$.



Hello,
Your work is great. But i am sorry to say that the question posted was wrong. Please read $\log_ba$ instead of $\log_ab$.
 
Last edited:
Dhamnekar Winod said:
Please read $\log_ba$ instead of $\log_ab$.
Ah, sorry it was my fault. It was I who copied your question incorrectly. (Blush)

Now $a$, $b$, $c$ form a GP $\implies$ $b^2=ac$ $\implies$
$$2\log_cb\ =\ \log_ca+1.$$
If $\log_ba$, $\log_cb$, $\log_ac$ form an AP, then
$$2\log_cb\ =\ \log_ba+\log_ac$$
(note: $x$, $y$, $z$ form an AP $\implies$ $2y=x+z$); i.e.
$$2\log_cb\ =\ \frac{\log_ca}{\log_cb}+\frac1{\log_ca}$$
converting to base $c$.

However, substituting for $\log_ca$ or $\log_cb$ (working omitted) would give cubic equations simplifying to $\log_ca=\log_cb=1$, i.e. $a=b=c$, i.e.
$$\log_ba,\log_cb,\log_ac$$
is just $1,1,1$.

So I still don’t think the common difference is $\frac32$; it’s $0$ (i.e. a constant AP).
 
Olinguito said:
Ah, sorry it was my fault. It was I who copied your question incorrectly. (Blush)

Now $a$, $b$, $c$ form a GP $\implies$ $b^2=ac$ $\implies$
$$2\log_cb\ =\ \log_ca+1.$$
If $\log_ba$, $\log_cb$, $\log_ac$ form an AP, then
$$2\log_cb\ =\ \log_ba+\log_ac$$
(note: $x$, $y$, $z$ form an AP $\implies$ $2y=x+z$); i.e.
$$2\log_cb\ =\ \frac{\log_ca}{\log_cb}+\frac1{\log_ca}$$
converting to base $c$.

However, substituting for $\log_ca$ or $\log_cb$ (working omitted) would give cubic equations simplifying to $\log_ca=\log_cb=1$, i.e. $a=b=c$, i.e.
$$\log_ba,\log_cb,\log_ac$$
is just $1,1,1$.

So I still don’t think the common difference is $\frac32$; it’s $0$ (i.e. a constant AP).


Hello,

After some computations, I got $$4(\log_cb)^3-2(\log_cb)^2=2\log_ca\log_cb-\log_ca+\log_cb$$ How did you solve this?
 
Dhamnekar Winod said:
I got $$4(\log_cb)^3-2(\log_cb)^2=2\log_ca\log_cb-\log_ca+\log_cb$$

You have a mixture of $\log_ca$ and $\log_cb$. Try converting everything to $\log_ca$ or to $\log_cb$, using the relation $b^2=ac$.

Since $a$, $b$, $c$ form a GP, you have square of middle term = product of the other two terms. This applies to any three consecutive terms of any GP.

Thus
$$b^2=ac\ \implies\ 2\log_cb=\log_ca+1.$$
 
Olinguito said:
You have a mixture of $\log_ca$ and $\log_cb$. Try converting everything to $\log_ca$ or to $\log_cb$, using the relation $b^2=ac$.

Since $a$, $b$, $c$ form a GP, you have square of middle term = product of the other two terms. This applies to any three consecutive terms of any GP.

Thus
$$b^2=ac\ \implies\ 2\log_cb=\log_ca+1.$$
Hello,

Your answer is correct. $\frac32$ common difference of A.P is wrong.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
Replies
1
Views
2K
Replies
2
Views
4K
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 7 ·
Replies
7
Views
7K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
Replies
7
Views
3K