MHB Find Dot Product Between Vector CD & Vector K

AI Thread Summary
To find the dot product between vector CD and vector K, first, vector CD is calculated as <-2, 4> from points C(2, 6) and D(0, 10). Vector K, which is perpendicular to vector A (-3, 2) and has the same norm, is determined to be <-2, -3>. The calculations confirm that K maintains a negative x-component and satisfies the conditions of being perpendicular to A. The dot product of vectors CD and K can be computed as CD · K = (-2)(-2) + (4)(-3) = 4 - 12 = -8.
sp3
Messages
8
Reaction score
0
Hi! I'm given 2 points C(2;6) and D(0;10), a vector A with its components = (-3, 2). I'm asked to find the dot product between vector CD and an unknown vector K, knowing that K is perpendicular to A, same norm as A and with a negative x-component. I know that perpendicular means the dot product=0 and vector CD has a norm \sqrt{40} if i calculate it, but I have no clue how to solve it (we can't have a calculator).

Thank you for your help!
 
Mathematics news on Phys.org
vector K would be $\left<-2,-3\right>$

vector CD would be $\left<-2,4\right>$

can you find the dot product?
 
Thanks for the reply, how did you find vector K?
 
sp3 said:
Thanks for the reply, how did you find vector K?

two ways ...

1. $\vec{A} = \left<-3,2 \right>$ has slope $m = -\dfrac{2}{3} \implies \vec{K}$ has slope $m_{\perp} = \dfrac{3}{2}$.

since $\vec{K}$ has a negative x component, then so does its y-component ... same magnitude means $\vec{K} = \left<x,y \right> = \left<-2,-3 \right>$

2. let $\vec{K} = \left<x,y\right>$

$\vec{A} \cdot \vec{K} = -3x + 2y = 0 \implies y = \dfrac{3}{2} x$

$|\vec{A}| = |\vec{K}| \implies \sqrt{(-3)^2 + 2^2} = \sqrt{x^2+y^2} \implies x^2+y^2 = 13 \implies x^2 + \dfrac{9}{4} x^2 = 13 \implies \dfrac{13}{4} x^2 = 13 \implies x = \pm 2$

$x < 0 \implies x = -2 \implies y = -3$
 
Equivalently, one vector perpendicular perpendicular to (a, b) with the same norm is (-b, a), another is (b, -a). Here, K= (-3, 2) so those two perpendicular vector are (-2, 4) and (2, -3). The first has x component negative.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top