Find Equation of Curve: y=f(x), f'(x)=(x-1)^2, (4,3)

  • Thread starter Thread starter help me =)
  • Start date Start date
help me =)
Messages
1
Reaction score
0
a curve y=f(x) passes through the point (4,3)
if f'(x) = (x-1)^2 find the equation of the curve.
 
Physics news on Phys.org
That's pretty easy to integrate. Just perform a u-substitution with u=x-1 and du=dx. Then put in your initial conditions to solve for C.
 
Moderator's note: thread moved to Homework & Coursework Questions.

Helpers please take note, the normal forum guidelines on giving homework help apply.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top