eoghan
- 201
- 7
Hi!
I'm trying to find the generators of the Lorentz group. Jackson lists them all, for example, the generator of a boost along x is:
<br /> K=\left( \begin{array}{c}<br /> 0\;1\;0\;0 \\<br /> 1\;0\;0\;0 \\<br /> 0\;0\;0\;0 \\<br /> 0\;0\;0\;0 <br /> \end{array} \right)<br />
Now, what I don't understand is: this matrix is a covariant, contravariant, or mixed tensor? I mean, should I write
K_{\mu\nu}\:\:,\:\:K_{\mu}\;^{\nu}\:\:,\:\:K^{\mu \nu}... or what else?
I'm trying to find the generators of the Lorentz group. Jackson lists them all, for example, the generator of a boost along x is:
<br /> K=\left( \begin{array}{c}<br /> 0\;1\;0\;0 \\<br /> 1\;0\;0\;0 \\<br /> 0\;0\;0\;0 \\<br /> 0\;0\;0\;0 <br /> \end{array} \right)<br />
Now, what I don't understand is: this matrix is a covariant, contravariant, or mixed tensor? I mean, should I write
K_{\mu\nu}\:\:,\:\:K_{\mu}\;^{\nu}\:\:,\:\:K^{\mu \nu}... or what else?