Find laurent series about z=-2

aaaa202
Messages
1,144
Reaction score
2

Homework Statement


Find the laurent series about z=-2 for:
f(z) = 1/(z(z+2)3)


Homework Equations





The Attempt at a Solution


Setting t = z+2 yields:
f(t) = 1/(t3(t-2))
= 1/t (-1/(2(1-t/2))) = (1/t)3 * (-1/2) * Ʃ(t/2)n which can be put together in a sum, but I can't be bothered due to my poor Latex skills.
My question is however: In what region will this sum converge? Am I right at saying that the expansion will only be valid in the region described by the circle lz+2l<2? If not please tell me, because the term 1/(t-2) should wreak havoc according to me if we go outside this circle.
 
Physics news on Phys.org
There's a typo to begin with:
\frac{1}{t^3(t- 2)}= \frac{1}{t}\frac{-1}{2(2- t/2)}
when you surely mean
\frac{1}{t^3(t- 2)}= \frac{1}{t^3}\frac{-1}{2(2- t/2)}
but the rest is correct.
You sum becomes
-\frac{1}{2}\sum \frac{1}{2^n} t^{n- 3}= -\frac{1}{2}\sum \frac{1}{2^n}(z+ 2)^{n-3}
You can find the radius of convergence of that using the "ratio test"
 
Okay, using the ratio test I find that indeed we have R=2. However, I am a little unsure about where the circle of convergence is centered. Is it true that it is centered about z=-2? Because in many books I see figures where the domain of convergence for a laurent series about a pole z0 is an annullus like the red one on the attached picture. When does this type of convergence happens?
 
When you performed the ratio test, you should have found the series converges when |z+2|<2. You can write that more suggestively as |z-(-2)|<2, which tells you the series converges when z is within a distance of 2 of the point z0=-2.

You get an annulus when you have more than one singularity. For example, suppose you wanted to find a Laurent series for
$$f(z)=\frac{1}{(z-1)(z-2)} = \frac{1}{z-2}-\frac{1}{z-1}$$ expanded about the point z0=0. For the first term, you can find a series which converges for |z|<2 and one which converges for |z|>2. Similarly, for the second term, you can find one that converges for |z|<1 and another for |z|>1. The series for f(z) will consist of some combination of those four series. Depending on which combination you take, the series for f(z) will converge in different regions of the complex plane, where the region of convergence for the individual series overlap. This breaks the complex plane into three regions — |z|<1, 1<|z|<2, and |z|>2 — and the middle one is an annulus.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Replies
9
Views
1K
Replies
12
Views
2K
Replies
3
Views
2K
Replies
2
Views
3K
Replies
1
Views
2K
Replies
3
Views
1K
Replies
3
Views
1K
Replies
12
Views
5K
Back
Top