nonaa
- 17
- 0
Homework Statement
\lim_{n\to\infty}\frac{\ln 2 - \sum_{k=1}^{n}\frac{1}{k+n}}{\ln 2 - \sum_{k=1}^{2n}\frac{(-1)^{k-1}}{k}}=?
Homework Equations
H(2n)-H(n)= \sum_{k=1}^{n}\frac{1}{k+n}
The Attempt at a Solution
I tried to use that \ln 2 = \sum^{\infty}_{k=1} \frac{(-1)^{k+1}}{k}, but with no success. Can you help me, please?