Unveiling the Connection: Rotation Groups & Hyperspheres

AI Thread Summary
The discussion centers on the isomorphism between the group of orthonormal rotations in n-dimensional space, SO(n), and the group of geodesic translations in a positively curved hypersphere of n(n-1)/2 dimensions. The initial post presents this concept as clear and intuitive, though it notes a lack of prior presentation in existing literature. A participant raises the need for clarification regarding the definition of "geodesic translations," particularly in relation to rotations around an axis. They specifically mention the case of n=3, suggesting that rotation is only a geodesic translation for points on the equator of the sphere. The conversation emphasizes the mapping of geodesics to rotations, indicating a deeper exploration of these mathematical relationships.
Tyger
Messages
388
Reaction score
0
My first post, about rotation groups..

A result about rotation groups.

To me this seems clear, simple and very intuitive, but in all the papers and books I've read on the subject I have never seen it presented. Maybe some of you have seen it, or maybe it is new. It is very simple to state:

The group of orthonormal rotations in a space of n dimensions, SO(n) is isomorphic to the group of geodesic translations in a positively curved space (hypersphere) of n(n-1)/2 dimensions.
 
Last edited:
Mathematics news on Phys.org


Originally posted by Tyger
A result about rotation groups.

To me this seems clear, simple and very intuitive, but in all the papers and books I've read on the subject I have never seen it presented. Maybe some of you have seen it, or maybe it is new. It is very simple to state:

The group of orthonormal rotations in a space of n dimensions, SO(n) is isomorphic to the group of geodesic translations in a positively curved space (hypersphere) of n(n-1)/2 dimensions.

this is a nice thought. It may require a special clarification of what is meant by "group of geodesic translations" in order to make sense-----or this could be my private confusion and it is immediately understandable to everyone but me!

I think of the case n=3 where your theorem says
SO(3) is isomorphic to the geodesic translations of a sphere in 3 dimensions.
This seems right except that rotation around an axis is only a "geodesic translation" for points on the equator. So that one may have to extend the definition in some fashion.

Sorry about the vagueness, I just this moment saw your message and am replying directly.
 
Maybe I better clarify my statement

Choose any two points in a sphere of n(n-1)/2 dimensions, draw a geodesic from one point to the other. Every such geodesic can be mapped to a rotation in a space of n dimensions.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top