Find potential energy using time-independent Schrodinger's equation

AI Thread Summary
The discussion revolves around determining the potential energy function U(x) using the time-independent Schrödinger equation. The derived expression for U(x) is (2h^2/mL^4)(x^2 - 3L^2/2), which indicates a parabolic shape centered at x = 0. The solution key confirms that U(0) equals −3h^2/mL^2, suggesting that plugging in x = 0 yields the correct value for U(x). The participants clarify that the parabolic nature of U(x) is evident from its quadratic form. Understanding these aspects is crucial for accurately interpreting the potential energy in quantum mechanics.
eloiseh
Messages
2
Reaction score
0
Homework Statement
In a region of space, a particle with mass m and with zero energy has a time-independent wave function ψ(x) = Axe^(−x^2/L^2) where A and L are constants.
Determine the potential energy U(x) of the particle.
Relevant Equations
The time-independent Schrodinger's equation
I had found what U(x) was equal to already by plugging in the wave function and simplifying, which is (2h^2/mL^4)(x^2 - 3L^2/2) by the way.

But the solution key that I have goes an extra step. After stating the equation of U(x) that I got, it says that: "U(x) is a parabola centred at x = 0 with U(0) = −3h^2/mL^2"

Does that mean that I have to plug 0 in for x for the right answer? And how to determine that U(x) is a parabola centred at x=0?
 
Physics news on Phys.org
eloiseh said:
I had found what U(x) was equal to already by plugging in the wave function and simplifying, which is (2h^2/mL^4)(x^2 - 3L^2/2) by the way.

Does that mean that I have to plug 0 in for x for the right answer? And how to determine that U(x) is a parabola centred at x=0?
Your solution is a parabola centred at ##x=0##.
 
PeroK said:
Your solution is a parabola centred at ##x=0##.
Thank you so much!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top