Sorry for the delay -- I had to return to working with students face-to-face… I also was chasing an elusive minus-sign in this.
I'm going to return to this equation: r = -4 \cdot [ \cos(5\theta) - i \sin(5\theta) ]. Since we require r to be real, the imaginary part will be zero when \sin (5\theta) = 0 \Rightarrow 5\theta = k \pi \Rightarrow \theta = \frac{k \pi}{5} . So under that condition,
r = -4 \cos (k \pi) = -4 \cdot ( -1 )^{k} ,
which leads us to the solutions
z = 4 \cdot ( -1 )^{k+1} \cdot cis (\frac{k \pi}{5}) .
[Incidentally, z = 4 is not a solution, since that gives 43 = 64 , but 4 \overline {z^{2}} = 4 \cdot (4^{2}) = 64 , so the terms don't cancel in the original equation.]
We now find from this that
z^{3} = 4^{3} \cdot [ ( -1 )^{k+1} ]^{3} \cdot [ \cos (\frac{3k \pi}{5}) + i \cdot \sin (\frac{3k \pi}{5}) ] = 64 \cdot ( -1 )^{3(k+1)} \cdot [ \cos (\frac{3k \pi}{5}) + i \cdot \sin (\frac{3k \pi}{5}) ] = 64 \cdot ( -1 )^{(k+1)} \cdot [ \cos (\frac{3k \pi}{5}) + i \cdot \sin (\frac{3k \pi}{5}) ] ,
while
z^{2} = 4^{2} \cdot [ ( -1 )^{k+1} ]^{2} \cdot [ \cos (\frac{2k \pi}{5}) + i \cdot \sin (\frac{2k \pi}{5}) ] = 16 \cdot ( -1 )^{2(k+1)} \cdot [ \cos (\frac{2k \pi}{5}) + i \cdot \sin (\frac{2k \pi}{5}) ] = 16 \cdot 1 \cdot [ \cos (\frac{2k \pi}{5}) + i \cdot \sin (\frac{2k \pi}{5}) ]
\Rightarrow -4 \cdot \overline{z^{2}} = -64 \cdot [ \cos (\frac{2k \pi}{5}) - i \cdot \sin (\frac{2k \pi}{5}) ] .
We could use trig identities to show that z^{3} = -4 \cdot \overline{z^{2}} are the same, but it might be as quick to just examine the solutions, which you can check out. The distinct values only run from k = 0 to k = 4 , since
z0 = 4 · (-1)0 + 1 cis (0) = z5 = 4 · (-1)5 + 1 cis (pi) = -4 , and so on ; points beyond k = 4 fall onto already existing points.
As one example, if we test, say, k = 3 in the results for the two terms, we find
z_{3}^{3} = 64 \cdot ( -1 )^{(3+1)} \cdot [ \cos (\frac{9 \pi}{5}) + i \cdot \sin (\frac{9 \pi}{5}) ] = 64 \cdot [ \cos (\frac{9 \pi}{5}) + i \cdot \sin (\frac{9 \pi}{5}) ]
versus
-4 \cdot \overline{z_{3}^{2}} = -64 \cdot [ \cos (\frac{6 \pi}{5}) - i \cdot \sin (\frac{6 \pi}{5}) ] = -64 \cdot [ \cos (\frac{4 \pi}{5}) - i \cdot [-\sin (\frac{4 \pi}{5})] ] = -64 \cdot [ \cos (\frac{4 \pi}{5}) + i \cdot \sin (\frac{4 \pi}{5}) ]
= -64 \cdot -[ \cos (\frac{9 \pi}{5}) + i \cdot \sin (\frac{9 \pi}{5}) ] = 64 \cdot [ \cos (\frac{9 \pi}{5}) + i \cdot \sin (\frac{9 \pi}{5}) ] ,
by applying the symmetry properties of sine and cosine. The other four solutions are easier to check.
As I mentioned earlier, if you plot the polar curve r = -4 \cos (5\theta), you'll get a five-petal rosette: the solutions lie at the tips of each petal.