Find tangential velocity given radius and the coefficient of friction

AI Thread Summary
The discussion focuses on calculating tangential velocity using centripetal force and friction. The initial approach incorrectly equated centripetal force to gravitational force without considering the role of friction. It was clarified that the normal force, which contributes to centripetal force, must be derived from frictional forces rather than simply using weight. The correct relationship involves setting the frictional force equal to the gravitational force, leading to a revised normal force calculation. This adjustment allows for the accurate determination of tangential velocity.
Send-Help
Messages
2
Reaction score
0
Homework Statement
A student is in a giant trash can which is set on top of a revolving plate. The coefficient of friction between the student and the wall is 0.32, and the can has a radius of 10m. The can is set turning and the floor drops out. How can I find the tangential velocity of the can needed for the student to "stick" to the wall?
Relevant Equations
Fc = (mv^2)/r, Fn = mg, Ff = Mu (Fn)
I have attempted to solve for the velocity by setting the centripetal force (mv2)/r to the normal force pointed to the center of rotation (mg). This approach seems to give the incorrect solution and I am unsure of my misunderstandings.
 
Physics news on Phys.org
:welcome:

Can you post your working? Your method looks correct.
 
Send-Help said:
I have attempted to solve for the velocity by setting the centripetal force (mv2)/r to the normal force pointed to the center of rotation (mg). This approach seems to give the incorrect solution and I am unsure of my misunderstandings.
The normal force is horizontal. Gravity is vertical.
 
Thank you for all the replies. I realized the normal force (also the force making up the centripetal force) cannot simply be accounted for by (mg) but has to be calculated from the frictional forces opposing the force of gravity. This means that (Mu*Fn = mg) which gives Fn=(mg)/Mu; This can be set equal to the centripetal force equation and the correct answer could then be found.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top