gruba
- 203
- 1
Homework Statement
Find area bounded by functions y_1=\sqrt{4x-x^2} and y_2=x\sqrt{4x-x^2}.
Homework Equations
-Integration
-Area
The Attempt at a Solution
From y_1=y_2\Rightarrow x=1. Intersection points of y_1 and [/itex]y_2[/itex] are A(0,0),B(1,\sqrt 3),C(4,0). Domain of y_1 and y_2 is x\in [0,4]. On the interval x\in[0,1]\Rightarrow y_1\ge y_2 and on the interval x\in[1,4]\Rightarrow y_1\le y_2.
A=\int_0^1 (y_1-y_2)\mathrm dx+\int_1^4 (y_2-y_1)\mathrm dx=\int_0^1 (1-x)\sqrt{4x-x^2}\mathrm dx+\int_1^4 (x-1)\sqrt{4x-x^2}\mathrm dx
How to solve integrals \int \sqrt{4x-x^2}\mathrm dx and \int x\sqrt{4x-x^2}\mathrm dx?
Substitution u=\sqrt{\frac{x}{4-x}}\Rightarrow du=\frac{2}{(x-4)^2\sqrt{\frac{x}{4-x}}}dx doesn't seems to work.